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ABSTRACT

4

This paper presents applications of semi-Boolean algebras to
empirical logic and ring theory. The development of semi-Boolean
algebras from subtraction algebras is showm and the identity of the
two 1s established. Examples of subtraction algebras are given. A
weakening of one of the subtraction axioms leads to a structure which
is non-distributive but orthomodular. Known as orthosubtraction
algebra, this structure is identical to a semi-orthomodular lattice.
Since the subspaces of a Hilbert space (and thus the projections)
form an orthomodular lattice they also form an orthosubtraction
algebra. Examples of orthosubtraction algebra applied to Hilbert
space are given.

The concept of a manual and how it relates to empirical logic
is introduced next. The set of events of a manual is a semi-Boolean
algebra. It is atomic and dominated and has relations of operational
complementation and operational perspectivity defined on it. From
these relations the manual condition is defined and the semi-Boolean
algebra is a DASBAM. Examples of manuals and DASBAMs are given., <
In a DASBAM the operational perspectivity relation is an equivalence
relation and a quotient structure of equivalence classes modulo this
relation can be formed. Known as the op logic, this structure inherits
some properties from the DASBAM. It is not a lattice and it 1is not
distributive, however. It does form what 1s called an associative
orthoalgebra. Examples of op logics are given.

The results from semi-Boolean algebras and DASBAMs can be
applied to certain types of rings. Boolean rings form classical
DASBAMs. Fields form semi-classical DASBAMs in which every atom is
a maximal element and vice versa. Semi-simple rings form DASBAMs
which are direct products of field DASBAMs. The projections of
rings with involution form associative orthoalgebras from which
DASBAMs can be generated. In the special case of a Baer *-ring
the projections form an orthomodular lattice.
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INTRODUCTION

b

This paper presents a summary of the findings and results of my
Trident Projeci, undertaken in the academic year 1981-82. The original
working title of this project was "Applications of Orthosubtraction
Algebra to Hilbert Space," but as the research progressed the main topic
became the application of semi-Boolean algebra to empirical logic. A 3
chapter on orthosubtraction algebra and its application to Hilbert space :
has been included in-the text.

According to Foulis and Randall of the University of Massachusetts
the goal of an empirical science is to "order, explain, and predict the
observab}e events associated with certain physical situations or exper-
iments."” Empirical logic is the attempt to formalize a logical calculus
of experimental propositions for use in the empirical sciences. The
level at which this is done is the operational level, hence the term
"operational statistics".

In this approach the basic concept is that of an operation. Each
operation is a classical experiment with outcomes that form a classical
sample space. Techniques of comnventional probability theory based on
measures on a Boolean algebra can be applied to each operation alone.
Often, however, the experimenter has a collection of operations which
overlap. The performance of ome: interferes with the performance of
another and a non-classical situation is generated. It is this case
that the theory of msnuals was formulated to handle.

Foulis and Randall define a manual mathematically as a non-empty
set of non—-empty sets w’ich are irredundant and in which the manual
condition is satisfied.” From the operations, subsets of outcomes can
be formed. These are known as events since they correspond to events
in the classical probability sense. The set of all events forms a
semi~- Boolesn structure as defined by Abbott and his students at the
Naval Academy. It is the application of the theory of semi-Boolean
algebras to the theory of manuals that is the main focus of this
paper.

One such application came from an unexpected area, that of ring
theory. Some of the nicest results come from the theory of manuals as
applied to certain types of rings. This use of ideas motivated from
empirical science in the study of the almost purely abstract area
of rings is somewhat serendipitous. It illustrates some of the beauty
of mathematics in that it connects seemingly unrelated areas.

POV DR

In Chepter I the idea of a subtraction algebra is introduced.

i Subtraction algebras. are duals of implication algebras as developed
[~ by Abbott and Kleindorfer at the Naval Academy in 1961.” In Part One ‘
X the subtraction axioms are introduced and some properties are derived )

fﬁ from them. Theoreme 15 and 16 establish the fact that subtraction algebras 4
P, and semi-Boolean algebras are identical. As a result many of the ideas
‘é from semi-Boolesn algebras may be applied using subtraction notation.

Some examples of subtrgction algebras are presented. In Part Two con-

. cepts from universal glgebra are discussed in the context of subtraction
- algebras. These include the ideas of subalgebras, homomorphisms,

- ideals, congruence relations, and diredt products.

B e B Be BB doan ™ et ) z aliwtoal o P - . L moala ‘_‘A_»'__.‘__.J




Chapter II examines the effects of a weakened form of the third
subtraction axiom on the structure. The result is orthosubtraction algegra.
which is the dual of the orthoimplisation algebra of Abbott and Kimble.
Again properties are derived from the axioms. Theorems 14 and 15 estab-
lish the correspondence between orthosubtraction algebras and semi-
orthomodular latticed. In Part Two these results are studied in the
context of Hilbert space. Specifically the application of orthosubtraction
to the lattice of subspaces of a Hilbert space and to the set of
projection operators on a - Hilbert space is made. Some examples of
orthosubtraction algebra as applied to particular Hilbert spaces are
given.

Chapter III introduces the idea of a manual. Part One discusses
the intuitive notion of a manudl and presents the set theoretic def-
initions of Foulis and Randall. Part Two illustrates how subtraction
algebra can be applied to manuals to generate DASBAMs. "DASBAM" is an
acronym that I coined to stand for Dominated Atomic Semi-Boolean Algebra
satisfying the Manual condition. Theorem 3 states the identification
between event structures of menuals and DASBAMs. Part Three gives some
cdassifications of DASBAMs. These include classical DASBAMs, semi-
clagssical DASBAMs, dacifications, direct products, and free DASBAMs.

The idea of ghosting is defined. Part Four presents some examples of
DASBAMs and manuals.

" Chapter IV investigates some properties of the operational per-
spectivity relation defined in the previous chapter. A hew structure is.
formed, knowm as the op logic. Part One presents some properties of the
op logic. The idea of an associative orthoalgebra is introduced and
Theorem 13 shows that the op logic of any DASBAM is an associative
orthoalgebra. Part Two illustrates some examples of op loeics.

Chapter V introduces the subiect of ring DASBAMs. Differemnt
tvres of rings are shown to exhibit a partial order. Some of these
form DASBAMs directly, others form associative algebras from which
DASBAMs can be generated. Part One shows how a Boolean ring with identity
forms a Boolean algebra and thus a classical DASBAM. Part Two shows
how a field produces a semi-classical DASBAM in which each atom is a
maximal element and vice versa. Part Three uses Theorem III-6 to show
how finite semi-simple rings form DASBAMs which are direct products
of field DASBAMs. In Part Four rings with involution are discussed.

They are shown to vield associative orthoalgebras which in turn vieidd
DASBAMs. The svecial case of a Baer *-ring. which produces an ortho-
modular lattice is vpresented.

These subiects are only a small part of the areas that I would have
liked to have covered. The application of ideas from orobability theory
such as weights and states and the notions of property lattices and
questions from Piron and Aerts are subiects that I did some study.in.
Unfortunately I need to study these in more detail in order to present
them proverly. I hove to have an opportunity to do this and to use this
paver as a basis for further research.




CHAPTER ‘I: SUBTRACTION ALGEBRAS

LF PART ONE: Definitions and Properties 4

A subtraction algebra S = (S,\) consists of a carrier set S with a
binary subtraction operation satisfying three axioms.

S1 x\(y\x) = x (contraction)
82 x\(x\y) = y\(y3\x) (quasi-commutative) I
83 (x\yhz = (x\z)\y (exchange) )
Lemma 1: (X\y)\y = x\y
Proof: (x y)ny = (xay)n(ys(xvy)) = x\y 1
Lemma 2: x\x = (y~x)~(y“x) :
Proof: x\x = x\(xM(y+x)) = (y~x){lysx)sx) = (yvx)~(y\x)
Theorem 1: There exists a constant o ¢ S such that i

(a) xxx=o0

(b) x~0 = x

(¢) ox=o

Proof:

(a) It must be shown that x\x is independent of x, that is »x = y\y
for all x and y in S.
(xxx) = (v x)N(yx) = (FNF )N (7(y~x))
= (XSXY)IN(xXN(xNY)) = (xsyIN(xvy) = yoy

(b) xv0 = x\(x\X) = x

(c) o\x = (X \X)\X = X\Xx = 0.

Theorem 2: For all x and y in S the following are true:
() (x~y)\x = o
(®)  y~(y~(yvx))
(c) x\(y~(y x))
o (d) (yn(y~x))sx = (N(yx)Ny = 0

X
X\y

o WS

g (@) (X~ y)n(y\x) = x\y .l
(a) (XW)NX = (X\X)\Yy = Oo\y = 0 ' %
. () yNIVIX)) = (P xIN((yxNY) = (Y x)ro = yNx

Fi (e) x~(y~(y~x)) = xN(x\(x\y)) = x\y 1
[' (d)  (yr(yvx)Inx = (x\(xX\y))»x = 0 .

(e) (x~y)N(yvx) = (xyvx))Sy = x°y

B | z." e
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:'.' From these results another Theorem can be established.

Theorem 3:
o . (a) x\y = y\x if and only 1if x = y
B (b) x\y = x if and only if nx = y
(c) x\y =y implies y = 0 = x

i - Proof:
b (a) Suppose x\y = y\x. Then X = x\(y\x) = x\(x\y) = y\(y\x)
= yn(x\y) = y.

(b) Suppose x\y = x. Then y~x = yx(x\y) = y.
(c) Suppose x\y = y. Then y = y\(x\y) = y\y = o
Also x»y = x\0 = x and X = y hence x = o

From the results in Lesmas 1 and a and Theorems 1 and 2 it is possible
to find all elements generated by two general elements x and y. This is
knowma as the free subtraction algebra on two elements and consists of the
six element set {o0,x,y,x~y, y°X, x~(x\y)}. The subtraction table is given

below:
0 y x\y y™x x~(x\y)

° o o o o o
x 0 xy | x~(x\y) x x\y
y y nX o y x~(xNy) X
ny x\y o x\y o Ny x\y
X ™X y~x ) X o X

xn(xvy) | x\(x\y) ) o x~(x\y) [ xs~(x\y) o

Table 1

Theorem 3 allows the construction of special algebras satisfying
additiomal conditioms.

The next theorem provides some identities on three elements.

Theorem 4: For all x, y, aad z in S:
(8) (z5)N(z2xx) = (xvy)n(xn2) 85
(b) z~(2n(nx)) = (2~x)\(27(y\x))
() ((y(zxx))\(y~x) = o
(d) y\z = o implies (" (2z:x)) = nx
(e) (zxyhx = (2vx)\ (INX) (autodistributive) S4

.........
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()

‘ (c)

", (d)

r‘ (e)

()

h (8)

From

Theorem 5:

(82)
(83)

From
on (S,v).

z~(z~ (%)) = (2n(2ay) N

(8) z~(zn(yn(yvx))) = x~(x~(n(yx)))
- ) Proof:
% (8) (Z9)N(zxx) = (2n(zxX))Ny = (x~(B2 Iy = (x9N (x22)
(®) z~(zx(™x)) = (XIN((yvx)nz) = ((P N XIN((Fx)N2)

= (z~x)N (2 (X))
(N (F(2nx)) )N (yvx) = ((FoxIN(N(2~x)))N (yax) = o

Suppose y>z = o. (yx)~(yn(yn(2vx))) = (yM(y~(y~(zwx))))x

= (y(znx)hx = (yax)s(2ax) = ((yrx)so)n(zax) = ((y>x)N(y~z))N(z2+x)
= ((2x)N(2xy))~(zxx) = 0 = (y~(y~(2vx)))N(y~x)

Thus (y x) = (y~(y\(z:x))) by Theorem 3a.

((z>y)>x)IN((2ox)N(vx)) = ((2vx)Sy)IS((28x)s (X))

= ((PNNIINU(PNEIN(Zn X)) = on((™"x)N(22X)) = 0o
((x)S () IN((2vy)nx) = ((2ax)N(yx) ) ((2vx)Ny)

= ((FX)N((25x)Ny) In(yax) = (Y (y~(2:x)))N(y~x) = 0

Simee ((zxy)x)N((Znx)N(y~x)) = ((2~x)N(ysx) )N ((2vy)~X)
thea by Theorem 3a (z y)sx = (z~x)\(y~x)

za(zn(ynx)) = (px)N((vx)nz) = (yax)S((yrz)sx)
= (NN ((Fx)N(23x)) = (2vx)N((2vx)N(yax)) = (2ax)n((2vy)Sx)
= (an(2z~y))\Xx by the autodistributive law.

(2N~ (X)) = (2~ (2ny))s(yox) = (y~(rx))IN(NX)
= (x(n2))N(x\Y) = (XN(xvY))IN(F2Z) = x(xv (yn(y~2)))
by using the result of Theorem 4f.

Theorem 4 alternate characterizations of subtraction algebra can

be obtained.

A subtraction algebra is an algebra satisfying S1 and S5.

Proof: It is necessary to verify S2 and S3.

x> (xvy) = (xn(ysx))S(xvy) = (yN(yvx))n(ysx) = yN(nx)
It shall be shown that ((zxy)»x)N((zvx)sy) = o and without

loss of generality ((z~x)\y)~((z~y):\x) = o. Since Theorem 3a
wes proved only using S1 and S2 the end result will follow.

((a~y) sx)S((2ax)ny) = (((2ny)sx)s ((20y) ~2)) N ((2vx)Ny)

= ((2xX)N(27(289)) )N ((Zsx)ny) = (y(28(2vy))) ~(ys(2nx))

= (yNyn(yaz))) Ny (X)) = (yz)N(yn(2xx)) = ((2vxN 2)N ((2vx)\y)
= gn((zvxy) = 0.

Thus ((2x)Ny)N((Zvy)sx) = ((28y)sx)N((2 x)\y) and hence
by Theorem 3a ((z~x)ay) = (€<y)sx)

the subtraction identities a partial order relation may be defined
A partial order relation is a binary relation which is reflexive,

antisymmetric, and transitive.

Definition 1: x < y if and only if x\y = o
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Theorem 6: (S,N, <) is a partially ordered set.

Proof: (Reflexivity) x < x as x\x = o,
(Antisymmetry) Suppose x <y and y < x, that is x\y = 0 = y\x.
Then x = y by Theorem 3a.
(Transitivity) Suppose x <y and y < z, that is x\y = 0 = y\z,
oz ‘= (xnoN z = (xnN(xY))vz = (PN(YNx)Nz = (¥ 2)N (yx)
= o~(yvx) = 0, thus x < z.

Thoerem 7: x < y implies x~z < y~z (Isotone Law)
Proof: (x~2)~(y~2z) = (x\y)~z = o~z = 0, thus x z < ynz.
Theorem 8: x < y implies z\y < zxx (Antitone Law)

Proof: (z\y)\(z~x) = (x~y)~(x+2) = oN(x~2) = 0, thus z\y < ax,

Theorem 9: o is the greatest lower bound for S.

Proof: It must be shown that o is a lower bound and that 1f z is any
other lower bound for S then z < o.

First, since o\x = o it follows that o < x for all x in S.

Secondly, if z 1s a lower bound then z < o, but also o < z, therefore

o= 2z,

Theorem 10: x < y if and only if there is some z such that x = y\z

Proof: Suppose x < y, that is x~y = o.
X = X0 = x~(X\y) = y~(y\x).
Let x = y\z, then x~y = (y~2)\y = 0, thus x < y
For each element x in S a subset I(x) of S can be defined, where
I(x) = {yly < x}. Theorem 10 states that I(x) = {x:z|z ¢ S}, and is

somewhat like a right ideal in other algebraic structures. I(x) is
called the principal ideal generated by x.

Given a partially ordered set a diagram may be drawn showing the
partial order. The elements are represented by points and the relation x < y

is represented by a chain of upward segments from x to y. The partial order
diagram for the algebra of Table 1 is shown here.

* ¢
7(\& # X

Figure 1
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Theorem 2d states that x~(x\y) 1s a lower ho'mnd for x and y, that is
x~(x~y) < x and x\(x\y) < y. In general it is desirable to know what the
greatest lower bound of x and y is.

Theorem 11l: x~(x\y) = y\(y\x) is the greatest lower bound of x and y.

Proof: The above remarks show that x~(x\y) is a lower bound. Suppose
z 1s a lower bound for x and y, that is z < x, 2z <y or z»x = 0 = z\y.

z(x~(x~y)) = (2n(x(xxy)))vo = (2\(x~(x\y)))N(zx)
= (x~(n(x\Y)))S(xnz) = (YN (XNZ) = (2ay)s(28x) = ov0 = O
Thus z < x~(x\y) and hence x~\(x\y) is the greatest lower bound.

This last theorem shows that any pair of elements (and, by induction,
any finite set of elements) has a greatest lower bound, or "meet." We will
denote this meet by x A y or in case there are more than two elements,

AI x, where I is an index set. However, there is not necessarily an upper

bound for any general pair of elements. An example of this is shown in
Figure 1, where x and y do not have a least upper bound, or "join" (denoted
x V y). A structure closed under both meets and joins is called a lattice.
A structure closed only under meets (or joins) is called 4 meet (or join)
semi-lattice.

Corollary: (S,\, <,A) is a meet gemi-lattice.
There are some cases where a least upper bound does exist.

Theorem 12: xV y exists if and omly if there exists z € S such that x < z,
y < z. Furthermore x v y = z\((z\x\y).

Proof: Suppose x < 2z, y < z. Firstly, (z~x)\y = (z~y)\(x\y)
= (2ny)N((xvy)ho) = (23 y)v((xy)s(xn2)) = (2vy)N((zsyN (2 x)) = (29 (zx)
Thus 2z~ ((2xx)~\y) = z\((z~x)A(2\Y)).

Next x~(z2~((znx)\y)) = x~n(2n((=~x)A(2\y))) < x~(2~(z+x)) by applying
the antitone law twice. x~(z\(z X)) =av(t(x\ ) =x\3 = 0 = y~(zn((2vx)Ny))
without loss of gemerality amd z~((z“x)\y) is an upper bound for x and y.

Finally, suppose x < p and y < p. It must be shown that (z~((z~x)\y))~p = o.

(3 (2 x)~y))2p = (2xP)N(((Z7x)Ny)\P)
= (2np)N((Zap)n(yp)) = (2np)s ((2nDp)n0) = (2zap)~(2vp) = 0 and hence
Z+~((zex)ry) < p.

Therefore x V y = z«((2vx)\y).
Corollary: For all x € S I(x) is a lattice.

Proof: Let y € I(x) and z € I(x), that is y < x and z < x.
YA Z<y<ximplies yaz c I(x).

Also, since x is an upper bound z ¥V y exists and z YV y < x, therefore
zVye I(x).

P
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Theorem 13: (Distributive Laws). If x,y, and z have a common upper bound

1..
D draar
.

R

then
. () (xAay)Vzs=(xV2)A(yvV 2)
) ) (xvyhzs= (xA z)V(y A 2)
Proof: (b) will be proved, then (a) will follow from (b).
. To show (b), note that z < (xVv 2) and 2z < (yV 2), thus z < (xV 2)A(y V 2).
h Also x Ay <x<xVzandx Ay<y<sz, thusxAy< (xv Ay v 2).
' - Therefore (X A Y)vz < (x v 2)A(y V 2).

»EZ ) Let r denote (x W z)A(yV z) and u denote x v z. Clearly r < u and
thus r\z < u\z
b Also u = u\((usz)ax)

L thus usz = (UuN(usz)»x))Nz = (usz)N((n2)sx)
’ = (usz)\((unx)vz) = (un(usx))vz = xv2 < x

Simce rvz = x\z it follows that r~\z < x
ﬁ - Witheut loss of generality r\z <y
Hunce r\z2 < X A y and (rn2)v(xA y) =0
r =0 = n((rn2)V(x A y)) = zv(x Ay), the desired result.
Por the proof of (a) use (b), thus

xvzIA(FVY 2) = (xan(yV2)Iv(zAa(yVz2) = (xAyV(XA 2Z)V 2
=2v(xAy).

Corollary: I(x) is a distributive lattice.

An overall complement cannot be defined on S as there is not in general
an upper bound. However, a relative complement can be defined.

Theorem 14: If x < y then y\x is the complement of x relative to y.

Proof: (8) x A (y7Xx) = xv(xn(ysXx)) = x\x = 0
) x v (yx) = yr((ynx)N(yx)) = yvo = y
(c) y~s(yx) = y A x = x, thus (x;); = x,

Definition 2: A Boolean algebra is a complemented distributive lattice
with an upper bound and a lower bound.

Corollary: For all x in S, I(x) is a Boolean algebra.
More general than a Boolean algebra is a semi-Boolean algebra.

Definition 3: A semi-Boolean algebra is a meet semi-lattice in which every
principal ideal is a Boolean algebra.

Theorem 15: Any subtraction algebra is a semi-Boolean algebra.

Proof: Follows from the corollaries to Theorem 12 and Theorem l4.

.........
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Theorem 16: Any semi-Boolean algebra is a subtraction algebra where
subtraction is defined as x~y = (x A Y)," where ,'c denotes the relative

complement with respect to x.

Proof: The three axioms must be verified.

(S1) =xn(y x) = x~(x A y); = (xA(xA y););
~EAGAEAND) = (RAYAGE A =of =x

(S2) =X N(x\y) = xN(x A y)," = (xA (xA y);)," = ((x A y);)"‘ =XAYy
which is symmetric in x and y and thus x\(x y) = ys(ysx)

(S3) First x;\y = x; A (2vy), thus (zay)hhx = ((zvy) A x);\y

= ((zzy) A x), A (2vy) = ((Z2v7)A(x A 2)), A (2vy) = ((zay) } A(z A x) A (
= (@X)A(2\y)) Vv ((2vy) J4(2v7)) = (23x)a(zny) is symmetric in
x and y, thus (2z-y)sx = (2 x)\y

Theorems 15 and 16 together yield the result that the categories of
semi-Boolean algebras and subtraction algebras are identical.

The corollary to Theorem 14 states that every principal ideal in a
subtraction algebra is a Boolean algebra. What if the entire algebra is
a principal ideal?

Theorem 17: (S,\) is a Boolean algebra if and only if there exists a
constant 1 ¢ S satisfying x < 1 for all xeS.

Proof: S is the same as I(1l) and is thus Boolean.

This definition of Boolean algebra, utilizing one binary operatiom,
one nullary operation, and three axioms is perhaps the simplest possible.
By Theorem 5 the simplest axiom set is €1, S5 and Theorem 17.

The following are examples of subtraction algebras: q

Example 1: A Boolean algebra (B,v,A,0,1,') is a subtraction algebra under
xy=xAy'.

Example 2: Let X be any set, A and B subsets of X. Define A\B = {a ¢ Ala ¢ B}.
The power set P(X), the set of all subsets of X is a subtraction algebra under
this subtraction. i

Example 3: Take X as in the previous example and take 10(X) to be the sub-
collection of P(X) consisting of all subsets of X having 10 elements or less.
Define subtraction on 10(X) the same way as on P(X). Since ANB has fewer
elements than A if A ¢ 10(X) then A\B ¢ 10(X) for all B. The axioms check out
and thus 10(X) is a subtraction algebra. It should be noted that if A and B
are each 10 element sets and A # B then AYB has more than 10 elements and i
thus A and B have no upper bound in 10(X). Therefore this is an example of

a subtraction algebra which is not a lattice.

eaedh,
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Further analogous examples can be generated by considering the set
of all finite subsets of X or the set of all countable subsets of X.

Example 4: Let (R,+,°) be a ring satisfying xz = x for all x in R. This
ring can be shown to be commutative and of characteristic 2 (x + x = o for
all x € R). Define x\y = x + xy. The axioms are verified:

" (S1) X\(y\x)-x\(y+xy)-x+xy+x2y-x+xy+xy-x

(s2) xs(xsy)-x\(x-l-xy)-x+x2+x2y-x+x+xy-xy-yx-y\(y\x)

(Thus x A y = xy)

(83) (zxxy = (z + zx)~y = z + 2x + zy + zxy is symmetric in x and y,
thus (zsx)\y = (z\y)s\x.

Any Boolean ring is a subtraction algebra. Furthermore a Boolean ring
with identity becomes a Boolean algebra where x A y = xy, xVy=x+y+ xy,
and x' = 1 + x.

Even without an identity x v y = x + y + xy exists for all x and y and
therefore R 1is a lattice, though it is not necessarily bounded above. This
is known as a generalized Boolean algebra.

PART TWO: The Algebra of Subtraction Algebra

Since a subtraction algebra is am algebraic structure all of the usual
algebraic notions may be applied to the study of subtraction algebras. The
first is the concept of a subalgebra.

Definition 4: A subalgebra of a subtraction algebra (S,n) is a non-empty
subset T C S which 1s closed under subtraction. That is, if x ¢ Tand y ¢ T
thea x~y ¢ T.

Lemma 3: If T is a subsubtraction algebra then o ¢ T.

Proof: T is non-empty, thus there exists x€ T, T is closed under
subtraction, therefore x.x = o ¢ T.

Theorem 18: If {T,} (where a ¢ I' and I' is any index set) is a collection
of subalgebras then nI’ Ta is a subsubtraction algebra.

Proof: o ¢ Tm for all a ¢ T implies o ¢ f\r Ta’ thus AI‘ Tu is non-empty.

let xeN, T andye N, T, thenxec¢ T andyec T, for allae T,

which implies ;sy ¢ T, for all a & T and hence®xy ¢ ﬂr %a'

This theorem means that one can define the subalgebra generated by a
subset X ¢ S as the intersection of all subalgebras containing X.

Another commonly used idea is that of a homomorphism.

.....

1
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Definition 5: Let S and T be subtraction algebras. A subtraction homomorphism
(homomorphism in this context) is a mapping ¢:S + T which preserves subtraction,
that is ¢(x\y) = ¢(x)\¢(y) for all x and y in S.
Lemma 4: If ¢ is a homomorphism then ¢(o) = o

Proof: ¢(0) = $(x\x) = ¢(x)\¢(x) = o.

Theorem 19: 1If ¢ 1s a homomorphism then ¢ preserves order, that is x < y
implies ¢(x) < ¢(y)

Proof: x < y implies x\y = o, thus ¢(x)\¢(y) = ¢(x\y) = ¢(0) = o
and hence ¢(x) < ¢(y)

Definition 6: If ¢:S + T is a homomorphism then the kernel of ¢ is the
pre-image of o, or:

ker ¢ = {x € S[¢(x) = o}
Theorem 20: ker ¢ is a subalgebra of S.
Proof: From Lemma 4 o € ker ¢ and thus ker ¢ is non-empty.

Let x and y be in the kernel, then ¢(x) = ¢(y) = o
¢(x~y) = ¢(x)\¢(y) = on0 = 0 and thus x~y ¢ ker ¢.

Theorem 21: x € ker ¢ and y < x imply y € ker ¢

Proof: x ¢ ker ¢ implies ¢(x) = o. ¢(y) = ¢(y)s0 = $(y)\d(x)
= ¢(y~x) = $(0) = o and thus y ¢ ker ¢

Theorem 22: x ¢ ker ¢ and y ¢ ker ¢ imply ¢(2~x) = ¢(2vy) for all z e S.

Proof: ¢(zx) = ¢(z)\¢(x) = ¢(z)\0 = ¢(2)~¢(y) = ¢(z\y)

Theorem 23: x ¢ ker ¢, y € ker ¢, and x v y exists imply x vV y ¢ ker ¢.

Proof: Suppose X V y exists. Since ¢ preserves order ¢(xy y) =
¢(x) v ¢(y) = o 0 = 0 and therefore x v y ¢ ker ¢.

The previous two results set the stage for the next definition:

Definition 7: An ideal in a subtraction algebra is a subqet I € S satisfying
two conditons:
(1) xeIandy<ximplyyel
(2) xeI,yel, and xv y exists imply x vy € I or, equivalently
(1'Y xeIand ynx e I imply y e I
(2') o¢c1l ‘

Theorem 24: If ¢ is a homomorphism then ker ¢ is an ideal.




.........
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, Proof: Follows from Theorems 21 and 23 and Definition 7.

’ A closely related idea in algebra is that of a congruence relation.
: . Definition 8: A congruence relation = is a relation which satisfies the

following four properties

- -
T

o

t e () x=x (reflexive)

i - (2) x=y implies y = x (symmetric)

. (3) x=yandy=zimplyx=z (transitive)

. () x=yand w = z imply x\w = y\z (substitution property)

8

- The kernel of a congruence relation is the set of all things congruent

E ' to o and is designated by ker = or o.

L . Theorem 25: If = 1is a congruence relation then there is a natural homomorphism

o associated with =, n:S + § where § = {X[x ¢ S} and x = {y|y = x}. Furthermore,

o o= ker n

E i Proof: Define xxy = #1). Since = has the substitution property this
subtraction is well defined. From this definition subtraction is obviously

preserved and thus n is a homomorphism.

Let x € 6. n(x) = X = 0 = "X = x\x implies x ¢ ker n

Let x ¢ ker n, that is n(x) -at{ylyix} muesxea
Since ker n < 6 and 0 € ker n it follows that o = ker n.
I1f 1 €5 i3 an ideal a congruence relation modulo I can be defined.

Theorem 26: If I is sn ideal then the relation x = y mod I if and only if
xvy € I and ynx ¢ I 13 a comgruence relation.

Proof: (1) o e I implies xx ¢ I and thus x = x mod I.

(2) x=ymod I if and only 1f y = x mod I follows from the
hypothesis.

(3) Let x =2ymod I andy =z mod I. Then x-y, y\x, 2,
sad 2.y are all in I, which means that (y~2) (yx) ¢ I.
(yr2): (y~x) = (x~2z)~(x\y) € I. By condition 1' of an
idesl x~z ¢ I. Likewise, without loss of generality
z-x e I, therefore x = z mod I.

() Let x = ymod I and w = z mod I. First it will be shown :
that x<w 2 y"w mod I, then it will be shown that y\w = Nz mod I.
The end result will follow by transitivity shown above.

(8) xxy €¢I and yxx ¢ I since x = y mod I.
{(x:)N(yw) = (x~y\w € I, also
(yw)N(xsw) = (yx)wsw e I
Thus (x»w) = (yw) mod I

(b) wwz el and 2w e I since w = z mod I
(NW) N(yn2) = (2zw)N(2vy) ¢ I, also
(YN2) (W) = (wz)\(wwy) ¢ I.

Thus (yw) = (yN\z) mod I.

T .- - . . . - oo S - .
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Therefore x~»w = ysz mod I by transitivity.

The machinery 1s now been established for "The First Fundamental
Homomorphism Theorem of Subtraction Algebra."

Theorem 27: Let ¢ be a homomorphism, then the range ¢(S) is isomorphic
to the quotient structure S modulo ker ¢.

Proof: It must be showan that there is a one to one, onto mapping
from $(S) to S, denoted y where Y(¢(x)) = x

(a) (One-to-one). Suppose Y(¢(x)) = ¢(¢(y)), then X = ; and hence
x+y ¢ ker ¢ and y\x ¢ ker ¢. Thus ¢(x»y) = 0 = ¢(yxx) and
$(x)N9(y) = o = ¢(y)~¢(x) and therefore ¢(x) = ¢(y)

(b) (Onto) Let z ¢ S. It must be shown that there is a ¢(w) e ¢(S)
such that Y(¢(w)) = z. Choose w = z, then y(4(2)) = Zz.
Therefore $(S) and S are isomorphic.

As the preceding results indicate many of the ideas associated with
homomorphisms in other systems of algebra cam be defined when considering
subtraction algebras. Terms such as injections, surjections, isomorphisms,
automorphisms, etc. can be defined. One can speak of the automorphism
group of a subtraction algebra.

One other algebraic concept needs to be introduced.
Definition 9: The direct or Cartesian product of two subtraction algebras

S and T 1is defined as the set of all ordered pairs (s,t) where s ¢ S and
t €T, that is

SXT={(s,t)|s € S and t € T).

Subtraction is defined (s,t)~(s',t') = (s\s8', t~t'). It is easy to
wverify S1 through S3 and thus S X T is a subtraction algebra. This concept
can be extended to arbitrary direct products in the usual way.

Finally the idea of a free algebra can be defined.

Definition 10: The free subtraction algebra generated by a set of elements
A, S(A) is the set of all unique elements that can be derived by combining

elements in A and meking only the identifications derived from S1l, S2, and S3.

The algebra given in Table 1 and Figure 1 is the free subtraction
algebra on two generators, S({x, y}l).

This section has shown that most of the ideas of universal algebra
apply to subtraction algebra. Specifically, the category of subtraction
algebra is closed under subalgebras, homomorphisms, and direct products.

dmad 2, it
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CHAPTER II: ORTHOSUBTRACTION ALGEBRAS

PART ONE: Definitions and Properties

The properties of subtraction algebras given in the previous chapter
were derived from the axioms S1, S2, and S3. In this chapter the effects
of weakening S3 on the structure.will be examined.

Definition 1: An orthosubtraction algebra is a structure S = (S,\) where

S 1is a carrier set of elements and \ is a binary operation satisfying three
axioms.

S1 x~(y~x) = x
52 x(xy) = yr ()
083 (z~(xwywIhx = 2nx

Axiome S1 and S2 are the contraction and quasicommutative axioms from
subtraction algebra. Axiom 0S3 is a weakening of the exchange axiom.

Theorem 1: If S is a subtraction algebra then it is an orthosubtraction

algebra.

Proof: It is omly necessary to verify 0S3. Let S be a subtraction
algebra, then it satisfies the autodistributive law. Hence:

(Zn(x y))vx = (zx)N((x y) X) = (2vx)\0 = 2ax

The similarity between subtraction and orthosubtraction algebras means
that meny results from subtraction algebra carry over to orthosubtraction
algebra. Specifically, those results derived from S1 and S2 also hold in
orthosubtraction algebra and are summarized here without repeating the
proofs:

Theorem 2: The following are true in any orthosubtraction algebra:

(8) (x\y)sy = xvy

(®) =xx = (yx)~(y~x)

(c) There exists a constant o ¢ S such that
1. xxx = o0
2. xN0 =X
3. onx=o

(d) x~y = ynx if and only 1f x = y

() x~y =y if and only {f x = y = o

Lesma: (xX\y)s\x = o (084)

Proof: (xxy)sx = ((xvy)a(x\y))\x = o~x = 0 by applying 0S3 and
Theorem 2.c.

Cm N o - - . . - - S | -
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This result held in subtraction algebra but with a different proof.
Most of the results of Theorems 1, 2, and 3 from the previous chapter can
now be established and are again stated without proof.

Theorem 3: The following are true in any orthosubtraction algebra:

(a) y~(y(y'x)) = yx

(®) x(y~(y x)) = xy

() (NG x)hx = (N(XINYy=o0

(d) xxy = x if and only if yx = y

Only one more lemma is needed.

Lemma: (:m\y)~(y-x) = xy.

Again, as with subtraction algebra it is possible to find all elements
generated by two general elements x amd y. This i3 the free orthosubtraction
algebra on two elements. Since the previous results are identical with those
from subtraction algebra the table is the same and is not repeated here.

There are two more results which should be stated here.

Theorem 4: (a) y~x = o implies (z~y)~x = zxx  (0S5)
(db) y\x = o0 implies (z x)~(z~y) = o

Proof: (a) (z\y)sx = (zn(yv0)nx = (z~(y~(y~X))\x =
(zn(x(x~y)))nx = 2vx by 3C and 083,

(b) Suppose yx = 0. (2vx)n(2vy) = ((z\y)sx)s(zvy) = o

It 1is now possible to give an alternate set of axioms for orthosubtraction
algebra.

Theorem 5: An orthosubtraction algebra is an algebra satisfying S1, S2,

Proof: It is only necessary to show that 0S3 can be derived from S1,
s2, 084, and 0SS5.

From 0S4 (x\y)\x = o, thus by 085 (z~(x~y)x = z.x
A partial order in terms of the orthosubtraction may now be defined.

Defininition 2: x £ y if and only if x\vy = o

Theorem 6: (S,~, <) is a partially ordered set

Proof: (1) =x\x = 6 implies x < x (reflexivity)
(2) Let x <7, ¥y <x; i.e. X"y = 0 = y X,
Them x = y by Theorem 2d. (anti-symmetry)
(3) Let x <y, y<2z, 1.6, X\y = 0 = y~2
By 0S5 y~z = 0 implies x~z = (X\y) 2z = o\2 = 0,
H

thus x < (transitivity)

N Y
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Theorem 4b now becomes the antitone law as in subtraction algebra.
. Theorem 7: o is the greatest lower bound for S.
Proof: To show that o is the greatest lower bound two things must be
establighed, that o < x for all x in S and that if z is also a lower bound

then z < o (hence 2z = 0).

o < x follows from Theorem 2.c.

[ /]
Let z < x, then z < 0 and z~0 = 0; thus z = 0 by Theorem 2.e.
Theorem 8: x < y if and only 1f there exists z € S such that x = y-z.
(a) Let x <y, that is x\y = 0. Then
ININGTNRK))) = g (7 xS ((73x)Ny)) = WN(y~x) 0) = yr(ysx)
® x\(X\y) = xn0 = x, 1.e. X = y\z where z = y~(y~(y\Xx).
(b) Suppose x = y\z for some z. x\y = (y z»y = o and hence x < y.
- The same notion of principal ideal generated by x, I(x) = {y|y < x}

= {x~z|z ¢ S) can be defined.
Theorem 9: The greatest lower bound of x and y under < is x:(x\y).

Proof: From Theorem 3c. x-(x\y) < x and x7(x\y) < y.
Suppose z < x and z < y, that is z\x = 2.y = o,

z = 2v0 = z7(2ny) = y~(y~2) < y~(ynx) by applying the antitone law twice.

From this theorem it follows that (S,\, <) 1is closed under meets.
The meet of x and y, x~(x\y) shallrbe designated by x A y.

2] Corollary: (S,N, <,A) 1is a meet semi-lattice.

Lower bounds always exist, but under what conditions does a least upper
bound exist?

Theorem 10: x V y exists if and only if there exists a z ¢ S such that
x <z and y < z. Furthermore xv y = 2+ ((2~y)A(2+x))

Proof: Suppose such a z exists, that is x~z = o = yxz. It is
necessary sary to show first that z\((z~y)a(z:x)) is an upper bound.

xn(z7((zvx)A(2\y)) < x\(27(2\X)) by applying the antitone law twice.
x2(zn (X)) = X (X (x~2)) = x°2 = 0, thus x < zn((28x) A(zny)). Without loss
of generality y < z2\((z\x)A(zvy)).

Finally, suppose x < p and y < p, then z~p < 2\x and 2\p < z\y, thus
np < (2vx)A(2\y)

’ Applying the antitone law again zx((z\x)a (2ny)) < z~(z~p) and
z~((znx)A(2\y)) < zA P < P.

Therefore x Y y = z~((z~x)A(2\y))

4
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‘Corollary: I(x) is a lattice for all x in S.

This next theorem is the orthomodular law expressed in terms of
orthosubtraction, as will be shown later.

Theorem 1l:

(oMs)

1If x <y < z then x = y\(z~x)

Proof:

Suppose x <y < z, then x = x A z = z~(2xX)

Since x < y then by the antitone law z\y < z\x and thus z~(z\x)

= (2n(zvy))N

(z~(27y) )N (20X) = (zZAy)N(2vx) = y(2°X) s8ince zA y = y,

Iheorem 12:

Proof:

Definition 2:

If x < z then 2\x is a relative complement of x in I(z), denoted x"z'

(zax) A x = (2x)N((2X)AX) = (2aX)8(20%) = 0O,
(znx) V x = z5((2~x)A(2~ (2+X))) = z\((zsx)A(zAx)) - z~((z~x)\x)
= Z\0 = 2,

t An orthomodular lattice is a bounded lattice satisfying the

following properties:

oMl: x
OM2: x
oM3: I
oM4: I
Theorem 13:

Proof:

w/x"-l,x/\x'l'-o

e -

f x <y then yl < x*

fx<ythenx=yA (x w/y*) (Orthomodular Meet Identity)
For all z in S I(z) is an orthomodular lattice.

(OM1) was verified in Theorem 12.
OM2) (x]); = 2n(x,) = on(z>x) = zAX = x

(oM3) Let x < y < z, then y: =zZ\y<z~x = x:
(0M4) Let x <y < 2. By OMS x = y~(2%x).
Also y\x <y < z sad thus y\x = y~(z(y\x)).

24

Py

Loy

YAG,Y®) =y AV D) =5 A @ ((20vy) = galas (N (77 (2vx))))

=y A (z2\(yvx)) = y\(N(2n(yx))) = yr(y~x) =y A x = x.
Beace the orthomodular law is verified.

Corollary to Theorem 13: If S has a greatest element 1 then § is an

orthemodular lattice.

Proof:

IP VIR Wl S VA TR Wy

S is the same as I(1l) and is hence an orthomodular lattice.
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Definition 3: A semi-orthomodular lattice is a meet semi-lattice in which
every principal ideal is an orthomodular lattice and which satisfies the
compatibility condition: (C) y < x < z implies yi = y: A X

Theorem 1l4: (S,\, <,A, :) is a semi-orthomodular lattice.

Proof: Only condition C needs to be verified:
x Ay: = xa(xXv(2Zvy)) = X\y = y: by OMS.

Bvery orthosubtraction (algebra) thus determines a semi-orthomodular
lattice.

Theorem 15: Every semi-orthomodular lattice determines an orthosubtraction
algebra where the subtraction is defined by y"x = (y A x);.

Proof: The axioms need to be verified.

1.1 .1
(s1) !\(I\x) x~(y A x)y (x A(yaA x)y)x (A F)A(xA y)y)x
=9 =x

x

1 1 1 1.1
(82) x(xny) = xvxA Y. = ((xAy)_AX)_=((xXAY))_ =XA ¥
-y\(y~x)x x yx yx X X'Xx

(083) Por simplicity denote z\(x\y) by w. w < z and thus w = wA z,

(Ev(E YINX = nnx = (WA x): = (WA 2 A x): = (w Az A x):av
= (w: ¥ (z A x):)l\ we (2A x): = z\x by the orthomodular law

The category of semi-orthomodular lattices is therefore identical to
the category of orthosubtraction algebras.

.
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PART TWO: Applications to Hilbert Space

One of the main reasons for the interest in orthomodular lattices is
the work of Birkoff and Von Neumann in 1936. In studying quantum mechanics
they discovered that the distributive laws failed and thus the structure
was not Boolean. As an alternate structure the orthomodular lattice was
adopted. This was because of certain properties satisfied by Hilbert space,
a mathematical tool much ugsed in the study of quantum mechanics and as a
basis of quantum logic. In this section the connection between orthosub-
traction algebra and Hilbert space shall be made.

A Hilbert space is a vector space with an inner product defined on it
which is complete. It may be finite dimensional or infinite dimensional.
Volumes have been written on Hilbert space and I will not repeat the results
here. A ggod book on Hilbert space is Introduction to Hilbert Space by
Berberian.

Of particular concern in the study of Hilbert space are the operators
om the space, specifically the projections and self-adjoint operators.
Since each operator determines a closed linear subspace (or subspace for
short) these are also of interest.

Definition 4: (a) A closed linear subspace M of a Hilbert space H is a
subset of vectors which is closed under linear combinations and is closed
in the metric on H, that is:

xeMamd ye Mimply ax+ByeM

and 1if {xn} is a sequence in M and lim x exists then lim x e M.
nhe n+e

(b) A linear mapping on a Hilbert space H is a mapping
T: H+ H satisfying T(a x + 8 y) = aoT(x) + BT(y) for all x and y in H
and a and 8 in the field of scalars. T is continuous if {Txn} converges
to Tx whenever converges to x. A continuous linear mapping is called
an operator. The adjoint of T, T* is the operator satisfying (Tx|y)=(x| T*y) 1
for all x and y in H. T is said to be self-adjoint if T = T*. T is said
to be a projection if it is self-adjoint and T< = T,

PRAFITY

Bach projection uniquely determines a subspace of H, the range of that
projection. Also, givem a subspace there is a unique projection of which
it 1s the range. Thus any results about the subspaces can be extended to j
the projections and vice versa.

It is now time to define subtraction on L(H), the set of all closed 1
linear subspaces of the Hilbert space H. 3

Definition 5S: If M and N are subspaces of H then M\N = MA(M A N)*

Lewma 1: MA N' < MN "

Proof: Note that M N N < N implies nt <M nnt

LctxeMan'. ThusxeMandxeN"‘andhencexe(HAN)‘L. j
Therefore x ¢ MA(M A N)L = M\N and M N N ¢ MW,




Theorem 16: M\N = M1/MAN\ N)

Proof: M\N = MAMA N)1 = MAMAM A N = MsM A N)
Theorem 17: N €M implies MMN = M O Nt
Proof: M\N -Ml\(MnN)j' =MN Nl

Definition 6: If N € M then N"' =MW =M AN

Note that this is similar to the compatibility condition, as N <M < H
implies that Nl =MANL=M NN by Theorem 17.

Theorem 18: (L(H),\) satisfies 0S1.

Proof: M\(N\M) = M\(Nn (NAM) ) =MaMA NNNAM )
aMA(MANAMANDL =MNAOL=MAH=M.

Theorem 19: (L(H),v) satisfies 0S2.
-
Proef: M\(MN) = (M\N); = (MO N)Ml)“- M A N = N\(N'\M) by symmetry.
Theorem 20: (L(H),\) satisfies the orthomodular law.

Proof: Let M €N. Also M < MWN'. Thus M < NAM vt ). To prove
containment the other way note that N! < M"' Thus NL 1 M and (M v Ni)
={z+ylzeM, ye N}, Let xec NA(MWVNL), then x = z + y ¢ N and hence
x-2z2=yeN, Butyec Nl sothat y = 0 and x = z. Therefore x € M.

Theerem 21: (L(H), ) satisfies 0S3.

Proof: Let D = C\(M\N), hence D€Cand D=D AE. DWM = (D I\M)
= (DA CA M) = (Dn(CA M)) A D by compatibility. By DeMorgan's Law this
is equal to (D Yy (CAM) )I\ D.

Since M\N < M it follows from the antitone property of ! that cn M)é
= C\M < CNV(M\N) = D. Thus the orthomodular law can be applied. Hence
(Dg ¥ (CA M)A D= (CAM and therefore D\M = (C\MMNMNY = OY,
verifying 0S83.

It follows that (L(H),\) is an orthosubtraction algebra.
Attention is now turned to the set of projection operators on H, P(H).

Theorem 22: P(H) is a éartially ordered set under P < Q if and only if
P= PQ - QP.

Proof: (a) P = Pz, thus P < P tzeflexive),

(b) Suppose P < Q and Q < P, thenP-PQ-PQP-PQ-PQ-QP-Q
(Antisymmetric),

(c) Suppose P < Qand Q <R, then P = PQ = PQR = PR and thus
P <R (transitive)
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Lemma 2: If P! 1s defined as the projection onto the null space of P then
PiP = PP® = 0.

Proof: Let x € H, then x = y + 2 where y ¢ Range (P) and z ¢ Null (P),

‘thus Pi Px = Ply = 0, as y! Null (P). Also, PPlx = Pz = 0 as z € Null (P).

Lemma 3: 17"L = I-P.

Proof: Let x € H, then x = y + z where y ¢ Range (P) and z ¢ Null (P),
Plx = z = (y42)-y = x -~ y = Ix - Px = (I-P)x, therefore P! = I-P.

Theorem 23: P(H) is orthocomplemented.

Proof: (a) Suppose Q <P, Q < pt » thus Q = PQ = PP Q =0Q =0
— therefore glb {P,PL} = 0.

(b) Suppose P <R, Pt < R, then P! = plR = (I-P)R = R - PR = R-P.
Since PL = I - P it follows that I-P = R-P and hence I = R.

() P ar-p' a1~ (1-P) = P.
Theorem 24: (Foulis) glb {P,Q} = P A Q = (P'Q)lq.
Corollary 1: 1lub {P,Q} =PV Q= (®* v Q¥*
Corollary 2: P(H) is a lattice.

Theorem 25: P(H) is an orthosubtraction algebra where P\Q is the projection
onto Range (P)\Range (Q).

Proof: O0S1 through 0S3 are verified by noting that L(H) is an ortho-
subtraction algebra.

Corollary: P(H) is an orthomedular lattice.

Note that the definition of the orthosubtraction is generally unwieldy
to express in terms of composition of operators. If P and Q commute, though,
it is easier to express P A Q and P\Q.

Theorem 26: P A Q = PQ if and only if PQ = QP.

Proef: Suppose P A Q = PQ. Then also QA P = QP. Since A is commutative
PA Q= QA P and hence PQ = QP.

g?ose PQ = QP, then (P Q) Q = ((I-P)Q) Q = (Q-PQ)'Q = (I - Q + PQ)Q
+ PQ2 = PQ = P AQ.

Theorem 27: P\Q = P - PQ 1if and only 1if PQ = QP.

Proof: P\Q = PA(P A Q) -P'\(PQ) = PA(I - PQ) = P(I - PQ) as
P(I-PQ) =P -PQwpP-PQapP- PQP = (I - PQ)P. Thus PP\Q = P - P2Q
- P "Qa

To close this section the following are examples of orthosubtraction
algebra as applied co Hilbert space:
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Example 1: Let H be Euclidean 2-space, Rz. The picture below shows the
locations of various subspaces associated with twe subspaces M and N:

in
) N-NNM
= M\N
® m
| The lattice diagram is belew:
7 N
M n

o

This is OM6, the smallest non-Booleen, orthomodular lattice. To show
that it 1is non-distributive look at (M Vv Ml) ANand (MA N)v (ML A N).

i MYM)AN=HAN=N
MANVM AN =0v0=0

Thus (MV H") AN MANWV (MLA N) and hence the lattice is non-
distributive.

Example 2: Let H be Euclidean 3-space, 13. The picture below shows the
locations of various subspeces assecisted with twe subspaces M and N.

Example 3: Let N = tz, complex 2~-space. The lattice diagram of P(H) is
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CHAPTER III: MANUALS AND DASBAMS

PART ONE: Empirical Logic and Manuals

What is a manual? Most people usually think of a manual as a group
of instructions which tell one how to operate a piece of equipment. An
example of this is the owner's manual for an automeobile or calculator.
Another type of manual might specify procedures for using a system. One
of the most important examples of this type of manual is the Reactor Plant
Manual, which is virtually a Bible for operations with naval reactors on
board nuclear submarines, surface ships, or prototype units. A third type
of manual, also encountered in the Navy, is one which describes the duties
a watchstander should perform and procedures for performing them. For
example, a seaman standing lookout on a destroyer can refer to NAVEDTRA
"Sesman" for an explanation of how to properly search for and report con-
tacts. Finally, anyone who has taken any lab science course is familiar
with laboratory manuals, which provide experiments to be performed and
procedures for performing them.

Looking back at those four different types of manuals it 1is apparent
that there is a common quality that they all share. This is the fact that
they all tend to contain collectioms of operations, experiments, or tests
to be performed by the user. These tests have outcomes to be noted by the
experimenter. Furthermore, the performing of one test often interferes
with the performing of amether. For example, the lookout can search the
horizon for surface countacts or he cam search the sky for air contacts but
he cammot do both simultaneously.

In meny respects this is similar to problems emcountered in the study
of quantum mechanics. In the realm of the subatomic Heisenberg's Uncertainty
Principle interferes and makes it impossible to perform a grand canonical
operation in every case. The best that cam be accomplished is to have a
collection of operations which may not be simultaneously performable and
which may interfere with each other.

It 18 the idea of a family of operations that have motivated Foulis
and Randall of the University of Massachusetts to pursue an operational
approach to empirical logic. Stated simply, empirical logic is an attempt
to model mathematically the picture of 'reality" presented by our senses,
i.e., the outcomes of the experiments we perform. It avoids questions of
existence such as "Does this pen have an existence independent of my sen-
sation of 1t?" Instead it is concermed with data such as "When observed
by the humen eye this pen appears green."

The origins of empirical legic date back to 1846 and the British
mathematician George Boole. In searching for a mathematical foundation for
logic he invented the structure known as the Boolean algebra. A Boolean
algebra is an algebra with the operations of disjunction, conjunction, and
negation which correspond to the logical connective "or," "and," and "not."
It has the preperty that it satisfies the distributive laws, which state
that (A or B) and C is equivalent to (A and C) or (B and C) and also (A
and B) or C is equivalent to (A or C) and (B or C). This same structure
also serves as a model for set theory which has the operations of unionm,
intersection, and complement. In 1936 Komolgovov formalized probability
theory using Boolean algebra as a basis. The way this was accomplished was
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L by defining a measure on the algebra which was disjointly additive, had a
::'?' value of 1 on the greatest element (corresponding to A or . nmot A) and 0
- on the least element (corresponding to A and not A). This today is used
N i' as the basis for classical probability and statistics as taught in high

school or college (such as SM239 at the Naval Academy). As explained in

that course there is an experiment such as flipping a coin or rolling a die
. which generates a sample space of outcomes. Events can be considered as
= sets of outcomes. A probability function is defined on the sample space
which assigns a weight from 0 to 1 on each outcome and which sums to ] on
all the outcomes. This weighting can be extended to the events by taking
the weight of an event to be the sum of all of the weights of the outcomes
contained in it.

Py
DABAPAE AN

Example 1: Let the experiment consist of the rolling of a die. The sample
space 1s {1,2,3,4,5,6} and a probability function could be one which assigns
weight 1/6 to each outcome. Take {2,4,6} to be an event, then the weight

of {2,4,6} is 1/2.

The metheds of classical statistics work well when there is just one
experiment. What happens, however, when there is more thsn one experiment?
Classical statistics does not work so well in this case and it is beneficial
to use "non-classical"” statistics. It is because of this situation that
Foulis and Randall formulated the concept of a manual. This concept and
other related concepts will be rigorously mathematically defined later, but
first an intuitive explanation. As the eramples at the beginning illustrated,
a manual is a collection of exp riments or operations to obtain (outcomes.
In general there is no biggest operation containing the others. Each
operation, however, is an experiment in the classical probability sense
with a sample space of outcomes and a related set of events. Outcomes from
different experiments which represent the same property are identified and
said to be the same outcome. In this case the operations can be said to
overlap.

With these ideas in mind the mathematical definitions of Foulis and
Randall are now presented.

Definition 1:6 (a) A premsnual @ is a nen-empty set of non-empty sets, E,F,G,
etc., where E = {a,b,c,...} is called an operation, test or experiment.

(») Q& is irredundant if and only if E € F implies that E = F.
(¢) a € E is called an outcome or atom.

(d) A €F is called an ev.ent.

(¢) X = UE is the set of all outcomes of &
EQ
(f) The set of all events is denoted £ (A

(g) 1If A and B are events then A oc B if and only if AV B = E
where E ¢ A, and AA B is empty. A and B are called
operational complements.

(h) A op B if and only if there is a common operational
complement C with A oc C and C oc B. A and B are said
to be operationally perspective.
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(1) AL1B if and only 1f An B = @ and AU B is an event.
A and B are said to be orthogonal.

The motivation for these definitions follows from the intuitive ideas.
Any good set of instructions should be irredundant for the sake of efficiency.
The outcomes are the consequences of the tests performed and are what will
be recorded in the operators log. Events are sets of outcomes as in classical
probability. Operational complements are just that, complements within an
operation. If A oc B and the operation is performed then either A or B but
not both will occur. When considered in the context of Hilbert spaces oc
can also be thought of as representing orthogonal complementation. Events
which are operationally perspective confirm one another, that is if A oc C
and B oc C then when A occurs C does not and hence if the operation Bw C
were performed then B would occur. The term arises from projective geometry
and in the context of Hilbert space can be interpreted as "span the same
subspace." Finally, if A L B then if A occurs B does not and the term again is
motivated by Hilbert space.

Condition M: A op B and B oc C implies A oc C.

Definition 2: A manual is an irredundant premanual which satisfies Condition

M.

The requirement for Condition M is desirable by thinking of a manual as
a set of imstructions. If A confirms B and B rejects C it makes sense that A
should reject C. Condition M requires that there be a test which directly
establishes the fact that A rejects C.

This idea of a manual does indeed fit in with the idea of a manual as
explained previously.

Aautad Bt enittibeb ettt S
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PART TWO: Application of Subtraction Algebra to Maunuals :

In Chapter I subtraction algebras were axiomatically developed and
shown to be identical to semi-Boolean algebras. Semi-Boolean algebras are
useful in that they have most of the properties of Boclean algebras but are
not as restrictive as there is not, in general, a greatest element. The
application of this structure in either subtraction or semi-Boolean form
shall be illustrated in this sectiom.

Definition 3: (a) A semi-Boolean (subtraction) algebra (S,\) is atomic
if and omly 1f there exists a subset A € S of atoms satisfying two conditions:

Al For all non-zero x in S there exists a € A with a < x.
A2

For all x€ S, a8€ A, x < @ implies x = 0 or x = a.

(b) The algebra is dominated if and only if there exists
a subset M 6 S of maximal elements satisfying these
two conditions:

Dl For x € S there exists e ¢ M with x < e.
D2 For allxe S, ecM1if e <x thene = x,

These awe terms from lattice theory. Ia general, an atom is a minimal
non-zero element. If every element has at least one atom contained in it
them the algebra is atomic. In a Beelesam algebra these properties imply
that every element is the join of all atoms beneath it. When this is the
case thean the algebra is atemistic. In a semi-~Boolean algebra it is again
trus that atomic implies atomistic. It is net generally true for lattices.
For example, in the lattice of natural numbers under the usual order 0 is
at least element and 1 the only atom. Al and A2 are true but no element
except 1 is a join of atoms.

Given a dominated atomic semi-Boolean algebra other relations can be
defined,

Definition 4: (a) xocy if smd only if xAy=0and xV y = e wvhere e ¢ M.

(b) x op y if amd only if there exists z such that x oc 2z
amd z oc y.

(¢) x1lyif amd only {f x Ay =0 and x V y exists.

Nemce x oc y means that x aad y are relative complements within some
Boolesm principal ideal generated by a meximsl element or operation. We call
x and y operational complements. Simce x may be dominated by more than one
maximal element it is possible that x may have distinct operational complements.
The relation op, operational perspectivity, symboliges this fact. The moti-
vation of the term orthogonal will be evident later.

Lesma 1: (a) x ec y if and only if there exists e ¢ Mwithx <e, y < e
and x = evy.

(b) x op y if and only if there exist e and f in M with x < e,
y <f, and e x = f\y
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This lemma allows expression of the relations in terms of subtraction.

Theorem 1: Q is an irredundant premanual if and only if the event
structure E(Q) is a dominated atomic semi-Boolean algebra.
Proof: (a) Let aabc an irredundant premanual and define subtraction
- om E(Q) :

ANB = {a € Ala ¢ B)
The axioms need to be verified.

(S1) AN(BMA) = {a ¢ Ala ¢ (BvA)} = {a € Ala ¢ B or a € A}
= {a € A} = A,

(S2) AN(AB) = {a € Ala ¢ (ANB))} = {a ¢ Ala ¢ A or
acB)=1{acAlacB} =AABSs=B\(BA)

(S3) (ANB)NC = {a ¢ AN\Bla £ C} = {a e Ala ¢ B and a ¢ C}
= {ac Ala g C and a ¢ B} = (ANC)NB.

(41) Let A c E(a)(A ¥ @), Since A is an event there is
seme outcome a € A, thus {a} €A.

(A2) Suppese A € {a}, then either {a} = Aor A = §.

(D1) Let A be am event, then there exists E e & with
A€CE.

(D2) Suppose E € A. By irredundance E = A. Therefore
E(@ 1is a dominated atomic semi-Boolean algebra.

(b) Let (S,~, A, X) be a dominated atomic semi-Boolean
algebra. For each element x form A_, the set of atoms
bemeath x : A_ = {a c Ala <x}. Pof allec MA_ 1sa
collection of ‘atoms. Take @ = { A, } indexed overeM By
Al A is non-empty and by D2 if A® €A_ then A = Af.
Therefore @ is an irredundant premmuaf

Theorem 2: If 0 1s an irredundant premanual and E(@) is the associated

event structure then the relation of oc on E(Q) is the same whether considered
as an event structure or as a DASBA.

Proof: Take E(Q) as an event structure and suppose A oc B. ANB=¢§
amd AV B = F implies that A = E\B aad thus A oc B in the sense of a DASBA.
The converse is also true.

Frem this result the relation of op can aiso be seen to be the same in
the irredundant premanual sense as im a DASBA because it is derived from the
oc relation. The following result also holds.

Theorem 3: @ 1is a manual if and omnly if E(d) is a dominated atomic semi-
Boolean algebra satisfying Conditiom M (a DASBAM).

Proef: Since the relations of oc and op in each structure correspond
Condition M must also correspond since it is impressed only in terms of oc
and op.
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This last theorem states the major difference between the viewpoint
of Abbott and the Naval Academy group and that of Foulis and Randall and
the Amherst group. In Amherst, the manual is studied mainly at the top
' (the operations) and the bottom (the outcomes). In Annapolis, the entire
Il semi-Boolean event structure is considered and while the operations and
atoms are important it is not to the exclusion of the rest of the structure.
By thinking in terms of a DASBAM the idea is one of an algebraic structure
whereas the idea of a manual suggests a set theoretic approach.
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PART THREE: Properties and Types of DASBAMs.

The simplest type of DASBAM is one like Example 1 in Part One of this
chapter, the set of events of a classical sample space. In this example,
the atoms are the singleton events corresponding to the outcomes and the
set of maximal elements has only one member, corresponding to the experi-
ment. Since the op relation is trivial Comdition M holds automatically.
This type of DASBAM where there is only one operation is called a classical
DASBAM. It is a Boolean algebra.

Almost as simple as a classical DASBAM is a semi-classical DASBAM,
defined by e\f = ¢ whenever e ¢ M, f ¢ M, and e ¥ f. ‘The tests do not
overlap each other, having only 0 in common. If each test is atomic and
dominated, then so is the whole algebra. To see that Condition M holds
note that the only nen-trivial op pairs oecur among the tests and the
common complement is 0. Thus if e op £ amd £ oc x then x = 0 and hence
e oc x.

Other types of DASRAMs are not as easy to explain. There are, however,
some theorems which determine whether or not a given semi-Boolean algebra is
a DASBAM.

Theorem 4: 1f a DASBA has only two tests it satisfies Condition M.

Proof: Let S be a DASBA with M = {e,f)}. Suppose x op y. There are
two possibilities, either x » y or else x ¥ y. If x = y then y oc z implies
x oc z trivially. If x ¥ y then there is an element z with x oc z and
Z oc y. Without loss of gemerality assume z = exx and z = f\y. % < e and
z<f, hemce z < e f. Since fre = f.(erf) it follows by the antitone law
that fre < frz2 =y, Thus y ? e~f and hence its only complement is z. Again
y oc z implies x oc z.

For the next types of DASBAM it is necessary to irntroduce the concept
of ghosting/

Definition 5: Let P be a partially ordered set, S, a subset of P, and Q a

partially ordered set with lower bound o. Define the ghosting of S within

P by Q as follows: Form S x Q = {(s,q)|s € S amd q € Q} and let (s,q) <
(s',q"') if and omnly if s < s amnd q < q'. Ideatify s ¢ S with (s, o) and
p ¢ M\S with (p,0). The new structure is a partially ordered set.

What is being dome is the adjoining of a copy of Q with O at s for every
point 8 ¢ S. This is similar to am out-of-tune TV picture of P, which is
known as a ghost. We will now specialize this idea for application to semi-
beolean algebras.

within S by ‘2 where ¢ runs over the dominating set. The resulting structure
1s called the“dacification of S and is denoted S*§ If I(e) is one such
meximal principal ideal then let e* be the atom of B, by which I(e) is
phested. The set I(e) x et = {(x,e%)|x < e} 1s defified to be the ghost of
I(e).

Defimition 6: Let S be a DASBA and consider the series of ghostings of I(e)

At this point it is useful to illustrate these terms via an example.
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le 2: Let S be S({x,y}), the free subtraction algebra on two generatbrs.
S 1s a DASBAM. Below are shown S and S+,

3

Figure 1

In the partial order diagram the ghost of I(y) is the set {(o,yh,
x Ay, YD, rxyD), (v, YH1.

In amy decification the ghosts of different tests do not overlap since
et = £+ inglies ¢ = £. The atoms of the dacification are of the form (a,o)
or (0, e*) where a is an atom of S. The tests are of the form (e, e') where
e is a test of S.

lLemma 2: x o¢ yins+1fandon1yifemacclyon¢ofchomis1nSand
the other in a ghost.

Proof: (e, e+)\x = (e\x,, 0) or (e\x]_, e+). If the first is true
then x is in the ghost of ’I('c} and y 1s in"S. If che second is true then x
is in S and y is ia the ghost of I(e).

Lemms 3: InS+ifxoey.yocz,mdzocwtheneitherx-zory-w.

Proef: Suppose x is in a ghost, then x = (x,, e+) and y = (e~x,,0).
Since y oc z then z is in a ghest and z = (fs(ewx;), f*) where £ ¢ M, Hence
we (£v(fs(ex,y)),8) = (enx;,0) = y.

Suppese x 18 in S, then y = (e\x, ¢ and z = (e, e+)sy = (e~(exXx), et e+)
= (x,9.) = X.

Theorem 5: If S is a DASBA then ST 1is a DASBAM.

Proof: It merely needs to be shown that S+ satisfies Condition M. Let
x op z and z oc w. By definition of op there exists y ¢ S* with x oc y and
y o¢c z. There are two cases: (a) x = z implies x oc w, thus Condition M
helds; (b) y = w implies x oc w, thus Condition M holds.

The process of dacification produces a DASBAM from a DASBA. The next
process produces a new DASBAM from two DASBAMs.
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Theorem 6: If S and T are DASBAMs then S X T is a DASBAM?

Proof: From the remarks following Definition 9 of Chapéer I, SxT
is a semi~Boolean algebra. Al, A2, D1, D2, and Condition M must now be
verified.

For the atoms in the ghosting look at the set {(a,o0)|a an atom of S}
{(0,b)|b an atom of T}.

Al: Por all x = (s,t) ¥ (0,0) either there exists a € A  with a < s
or if s = 0 then there exists b ¢ with b < t. Thus (a,0) < (s,t) or
(0,b) < (s,t).

A2: Suppose x = (s,t) < (a,0) then s <a and t = 0. Hence s = d or
s =0 and x = (a,0) or (0,0). Likewise x = (s,t) < (o,b) implies x = (o,b)
or (o0,0).

Tor the set of meximal elements consider the set {(e, f)le € M and
f e MT}

Dl: Let x = (s,t), them there exists e € M with s < e and f ¢ MT
with t . < f, thus (s,t) < (e,f).

D2: Suppose (e,f) < (s,t), thene < s and f < t. Hence e = s and
f=t, thus (e,f) = (8,t).

Finally, since subtractioa is defined coordinatewise so are the ;
relations of oc amd op, that is

(s,t) oc (s',t') 1f amd only 1if (s,t) = (e,f)\(s',t')

Atmatem

1f and only if 8 = exs' and t = f<t' if and only if s oc 8' and t oc t'.

Likewise (s,t) op (s',t') if and only if s op 8' and t op t'. {

M: Hence (s,t) op (s',t') and (s8",t') oc (s",t") impliés s op s’,
s' oc 8", topt', t' oc t". Hence s oc 8" and t oc t". Therefore (s,t) oc

(S",t").

".7

:! Theorem 7: If S is a free subtraction algebra with a finite set of generators

» {e,f,5...} then S is a DASBAMIO \
? Proof: Since S is finite it is atomic. The set of generators is the

:» deminating set. PFinally, note that S is a dacification since given a test ]
F 4 e form the element (e~f)rg..*x. This element is contained in e alone. i
- I(e) is isomorphic to I(exx) x I(x).

= This section has given some methods for recognizing DASBAMs and for
= constructing new DASBAMs. In the next section some examples will be
presented.
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PART FOUR: Examples of DASBAMs and Manuals

Example 3: Let B be a Boolean algebra which has a greatest element | and
is atomic. The oc relation is merely complementation and the op relation
is just equality, hence Condition M holds. This is a classical DASBAM.

Example 4: Let @ = {{a,b}, {c,d}, {e,f}}. Since there is no overlap
between operations @ is a semiclassical manual and E(Q) is a semi-classical
DASBAM. The partial order diagram is below:

E@ ) jead  fes3

3 14
A ‘ 34 %ZA i€

@
Migure 2

le 5: Let S be the free subtraction algebra on two generators, x and y.
Since there are only two tests S 13 a DASBAM. The partial order diagram is
Figure 1 of Chapter I.

Example 8: Let S be as shown below. S is a DASBA. However, by looking at
X, Zz, and w as in the diagram it is easy to note that x op z and z oc w but
there is no operatiem so that x oec w.

e V.2
x w
®
Pigure 3

Example 7: Let S be as in Example 5 and form the direct product S X BZ. The

initial and final partial order diagrams are as in Figure 1.

le 8: Let S be as in Example 5 and form S X T where'T 1s as shown below.
This direct product is a DASBAM.

2xT

Figure 4
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Example 9: Let S be as in Example 4 and form the dacification of S, S+.
The partial order diagram is givem below.

(¢ 1-') (“»F" (J »a’)

Although S was not a DASBAM S+ is.
Example 10: (The Lookeut's Maaual)ll

Let 4 = {{a,b,c}, {c,d,e}, {e,f,a}}. The partial order diagram of E(®)
is below. :

By imspection this is a dacification of & = {{a,c}, {c,e}, {e,a}} and
thus E(0) 1is a DASBAM, _ °

This example is known as the lookout's manual because it arises from a
situetion in navigation. Leek at Pigure 7:

p 3

Figure 7

PrSIR
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A vessel is steaming in the open ocean with three lookouts posted; a
port lookout, a starboard lookout, and an after lookout. Each lookout can
make reports as listed below:

Post Lookout a - contact in sector I
b - noe contact visible
¢ - contact in sector II

Starboard Lookout a - contact in sector I
f - no contact visible
e - contact in sector III

After Lookout ¢ - contact in sector Il
d - no contact visible
e - contact in sector III

Each lookout represents a test abailable to the Officer of the Deck with
outcomes as above. The collection of tests forms a manual and the event
structure is a DASBAM.

ample 12: Let H be a Hilbert space. Take ( to be the set of all orthonormal
bases of H. The atoms are the unit vectors of H and the events are sets of
orthogonal unit vectors.

Suppose that A L B as events, then AUB is a subset of an orthonormal
bagsis of H. Hence a 1 b for all a ¢ Aand b ¢ B and A . B as sets of vectors
in a Hilbert space. Therefore 1 in the DASBAM and 1 in the Hilbert space
correspond and the term “orthogonal" is justified.

Let A oc B, then A_i B and A L B. Also AVB 1is an orthonormal basis.
Hence (Span (A))L = Span (B) and A and B can be thought of as orthogonal
complements. Furthermore, since (Span (A))! is unique, Span (C) = Span (B)
whenever C oc A. Thus C op B is the same as the relation '"Spans the same
subspace as ."

The verification of Condition M in this case is now easy. A op B and
B oc C imply that Span (A) = Span (B) and Span (B) = (Span (C))l. Thus
Span (A) = (Span (C))! and therefore A oc C.
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CHAPTER IV: THE OP LOGIC 2
'! PART ONE: Properties of the OP Logic ‘;

In the last chapter the requirements for a semi-Boolean algebra to
be atomic and dominated made sense when considering DASBAMs and manuals .3
for use in empirical logic. The requirement for Condition M might have
less obvious a motiva¢ion.

. v s
LAR R

<

r_.
ke

Theorem 1: If Condition M holds then the op relation is transitive. B

Proof: Let x op y and y op z. y op z implies there exists w such
that y oc w and z oc w. By Condition Myx oc w, thus w is a common iy
complement of x and z. Therefore x op z. ;
Theorem 2: If Condition M holds then op is an equivalence relation.

Proof: (1) x op x is obvious (Reflexive)

(2) x op y if and only if y op x 1is true .
by symmetry of the definition of op. (Symmetric) %
(3) xop yand y op z if and only 1if
X op z was proved in Theorem 1. (Transitive) 3

Since a DASBAM is an algebraic structure amd op is an equivalence
relation it makes sense to investigate the quotient structure of the algebra %
modulo this equivalence relation. This will be called the op logic of the »
DASBAM.

To get a feel for what is happening in terms of the structure of the :}
DASBAM the following results will be established. ]
Lemma 1: If x op y via commen complement z where x < e, y < f, and

. esx = z = f\y the following are true. N

- (a) z < oM

(®) e f <xand fre <y
F:i (c) xAyceAnf

L

A2
o
ila a'a

Lalela

@ xAy= (e f)\2z

(e) x\y = e~f and y'x = f\e

) Proof: (a) Since z = e~x and exx < e, it follows that z < e. Also
Ff-, z = f\y and f\y < f imply that z < f. Hence z < e f.

(b) z < e Af. Thus by the antitone law e\(e A f) < e~z.
& Therefore e~f < x. Without loss of generality f-e < y.

(c) x<eandy<f. Thus xA y <e A f.

(d) First (xa y)a (2) = (xA (exx))Ay = 0Ay = 0, Second
(x A y)V(2) = ((enx)¥x)A ((fry) Vy) = e A f. Therefore ~
z and x A y are relative complements in I(e A f) and hence
xAy= (e A fiNz.
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() e = (enf) V(e f)r (XA y)V2Zv(erf) where the terms are
pairwise disjoint. Hence exz = ev(esx) = x = (e\f)V (xay).
Thus x\y = x«(x A y) = e.f and without loss of generality
y x = fie,

These facts are illustrated in Figure 1.

Figuse 1

When x op y their common complement lies in I(eA f). For this reason
I(ea f) 18 called the axis of perspectivity.

The op-logic shall now be defined as a quotient structure of the DASBAM
modulo the op relation.

Definition 1: (a) x = {yly op x}
(®) S = {x|x ¢ S} 1s the op-logic of the DASBAM S.

It is desirable to determine what sort of structure the logic has and
what properties it inherits from the DASBAM., To begin a partial order relation
is defined.

Definition 2: x <y if amnd only if for all X, € x there exists y, ¢ y with
X, <Y..
1—~-71

Lemma 2: 1If X, Op X, and there exists e € M with x, < e and x, < e then
% =X,
1 2

Proof: x, oc e~X,, thus x, oc e\x, . Hence f\x, = e\x, and xZV(e\x )= ¢
vhere f ¢ M. Since x < e and &x, < e"it follows tﬁat f <’e. Thus f ="a.
Since relative complements are unique Xy = X

With this lemma it can now be established that < is a partial order re-
lation on S.
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Theorem 3: (S, <) is a partially ordered set.

Proof: (1) x < x is clear from the definition (Reflexive)

(2) Suppose x < yand y < x. Then for
all x| € X there exists Yy €Y with

X £ ;e But for Yy € y there exists
X, €x with Y1 2 x,. Thus X < Xye
But x, op 3‘_2 azd thus X) = Xy =Y,
Therefore x = y. (Anti-~symmetric)
(3) Suppose x <y and y < z. For all
x; €% ther: is_yl €y with x 2 yl._
Also since y < z there exists 2, ez
:d.th—yl %< 2y, Hemce x, <z, and
x < z. (Transitive)
This partial order is essentially the same partial order from the

DASBAM lifted to the logic. The next theorem gives an alternate definition
of this order.

Theorem 4: x < y if and only if there exist x, € X and v, € y with

X <9,

Proof: Suppose x < -y-, then the result follows obviously from Definition
2,

Suppose there exist x, € x and v, € y with x; < Y1° Let X, Op Xy, it
must be shown that there exists ¥y € ; with X5 2V, Since x; op x, there
exist e and f with esx, = f\xz. By the anitone law e\y, 2 evx,, thus
esy, < f\xz. Let v, = f<(e\yp). By the antitone law f\(fsxz) < £~ (e~y1).

But x, < f and this x, = fA x, = -f-\ (f~x2) 29, ﬁlso ey, = fsyz, -1.)
that Y, OP ¥y Thus for all x, ex there is Vo€V with X, 2 Y, and hence
x<y.

This second definition of the partial order is the easier of the two
to use when checking whether or not x < y.

The next step is to define an orthocomplementation on s.

Definition 3: x * = {y|y oc x}

From Condition M it doesn't matter which x ¢ x is chosen for the
definition.

—1 —
Theorem S: x ¢ S.
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Proof: It must be shown that x ' = y for some y. Let Yy € x' and
¥y € x*. Thus y; oc x and ¥, oc x. Therefore ¥y OP Y,- Also, suppose
Y1 9P ¥, and Yy € ;l. Then y, oc ¥ and by Condition M, yo oc X. Hence

¥, € x* and ;;1 - %,

Theorem 6: (El)l = x.

Proef: (' -A_y'l where y oc x.

y"‘ = {z|z oc y} and thus z oc y and y oc x. Hence z op x and
- e T BN

z= (x) =x

Theorem 7: (S, <) is bounded above and below.

Proof: (above) Let M = T For all x € §, and for all x € X there

is e € 1 with x, < e. Hemee x < 1,

1

_ _(below) Since 0 < x for all x in S it follows that O < x
for all x € S.

=1

. Theorem 8: 0 is the greatest lower bound of x and x .

Proof: Suppose there exists z with z < x and z < x, then for all
- - . - ot
1 €% there exist X, €X, ¥, €X with z; < X, z, < Yq» and X, oc y;.

Hence Z; < XAV But ylel-O. Thus zy = QQand z =0

Theorem 9: 1 is the least upper bound of x and x-.

Proof: Suppose there exists z with x < z and X' < z. For all x, € X
there exists z, ¢ z with x; < z; < e where e ¢ M. Hence exz) < e\x) < e.
= < z implies that there exists z, € z with ex, <z, <e and thus
exz; < z,. Hence exz, = (exz;)A z, = 0 and z; = e, therefore z = 1.

From the last 5 theorems it follows that (5, <, ', 0, 1) is a bounded
orthocomplemented partially ondered set. In general, however, least upper

beunds or greatest lower bounds do not exist for a pair of elements. This
facteill be illustrated in the examples in Part Two.

Lemma 3: x <y implies |x| < {y| where |x| denotes the number of elements
of X.

Proof: Let x < ; For each x € X there 1s at least one y ¢ ; such
that x < y. DefineY ={ye vlx < yl. Y_1is non-empty. By the Axiom of
Choice a single y = y(x) can be chosen from Yx for each x. The resulting

mep x + y(x) is a mapping from x to ; It remains to be shown that this
map is one-to-one. Let Xy Xy € X and suppose y(xl) = y(xz). Then

x < y(xl) and X, < y(xl) and thus X, =X by Lemma 2. Since there is an

injection from x to y it follows that |x| < |yl.
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This result shows that the cosets get larger in magnitude as one gets
higher in the logic. Also, by Lemma 2 the equivalence classes are anti-
chaims as no two elements of a class are even contained in the same maximal
element.

Lemms 4: x, op x, and x;, !y implies x, iy,

Proof: Let Xy L1y, theny < esx, where Xy ¥V y < e. By Condition M,
oc e\x, implies X, Oc e\Xx,. Thus there exists f ¢ M with (esxl) sz = f

*
and (e\xl)l\xz = 0.
However, y < evx, implies y A x,< (exl) A x, = 0, thus y A x, = 0.

Also y ¥ X, < (e\xl) ¥x, = f. Therefore y'¥ x, exists and hence y i Xy

2
Lemmna 5: xlopxzandx

,-ﬂ—, —rr—y— .

4
L 27 implies leyop x, ¥ y.

Proof: Since op respects L it follows that x, L y and that x, vy

a

exists. Let x, Vy <eandx,Vy<f. Theny< ex, and y < fix,.

e =x *(axl) - x, Vy v [(esxl)\y] and

- ffd-v ey

f= xz'v(f x,) = x, vy V{(fsxz)\y]

where V denotes the fact that the elements are disjoint.

b smt e

Sdgiie T W ARttt

e\(xl Y) = (‘\81)\y - (f\xz)\y = fs (xz v Y)
Hence xIVy op xZVy.

Theorem 10: X; OP Xy, ¥ OP Yy Xy i1y, implies that x v yl op x, v Yy

v FAp——
R St Ta e e

Proof: ByLe—Sx1Vy1 op xZVyl. Also xZVy op xZVy2 for ’
the same reason. Since op is transitive x, v ¥, °P X, Y Yye

'y

"By Theorem 10 and Lemma 4 1 has the substitution property with respect
to op, thus the 1 relatien can be 1ifted to the op logic. ]

a

Definition 4: x 1 1£ and only 1if there exist x x, € x and v, € y with
- x, 1v,.
b 1="71

rAZED & i AR a0 orm 3

And ot b

Again, this is the same relation from the DASBAM lifted to the logic.

Lemma 6: If x Ly then O is the greatest lower bound for x and y. T

Proof: Suppose z < xand z < y, then for all z, € z there exist x, € x 4
<

y,. Hence z, <x, Ay, =0 and thus z = 0.

and y, € y with z, < x,; and z, 1

Lemma 7: ;1;1f.udon1yif;<;.

Proof: Let x i y, then x v yl exists for all X, € x and ¥, € y. Thus

X, L&y for some test e and X < c\yl - yl.

‘.._'A_L“_._." e o a PO — simtndenanchs P o
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Conversely, suppose x < y. Then for all x € X there exists yl €y
and e\y, ¢ y with x; < < ey, Thus X and Y1 have an upper bound and
l x; Ay, = 0. Therefore x, 4 y;» and X. 1y, ”

lemma 8: xVzopyVz, x, z, and y L 2 implies x op y.

Proof: xV z op y ¥V z implies that there exist e, f ¢ M with
ex(xVz) = A(yVz)s=w Hence w < e A f, Alsoz<sz<eand
» z<yVzc<f,  thus z < eA f. Therefore wV z < eA f. e=swV¥xVz
- and f = w¥ y V¥ 2. Purthermore, xA(wWV z) = yA(w V¥ z) = 0. Therefore
enx = wV z = f\y and hence x op y.

Theorem 11: X) OP X35 ¥ OP ¥p» Xy LY0 % 2V, implies YIN¥] OP Y X,-
Proof: y, op y, implies e\y, = fry, = 2. e = v, Vzand f = v, VY z.

X V(yls xl) and y, = x, V(y\:tz). Thus ¢ = x, v(ylsxl) Vv z and

fa= x, V(yz\xz)V z. Bemce x; oc (ylxxl) ¥V z and x, oc (yzs xz) ¥ z. Since

X, Op X,, X, oc (yz\xz) ¥ z and thus (y1~x1) vz op (y2~x2) V z. By Lemma 8

it follows that (yl\ xl) op (yz\xz).
Definition 5: y~x = y~x.
. By the preceding remarks this subtrvaction is well defined. Note that
. %t:.;.only a partial subtraction operationm since it is only defined when
.i Lesma 9: yx <y
' Proef: Follows from yix < y. .
n Theorem 12: The greatest lower bound of x and y\x is 0.
Proef: Suppose z < x sad z < y~X, then for all z, ¢ z there exists |
x; € X and ynx, € ynx with z) < x; aad z) < yx,. Hence z; < x, ':(72\_!)-
_ Since op respects i,x 1 INX, and thus X A((yzxxz) = 0. Therefore z = 0.
- The corresponding result for upper bounds does not hold, as will be
shown later.
v Defimition 6: If x & ythen x @ y=xvy. x @ y is called the ortho-

gonal sum of x and V.

By Theorem 10 this is well defined. As with the subtraction operation
the orthogonsl sum is only a partial operation.

Lesma 10: If x 17y, thenx<x @ 7.

Preof: Let x, ¢ X. Then there exists v, € y with x1 1y,. Hence
1 Vv, exists and x; < x; ¥V y,. ThereforeX < ‘x"‘V -x @ 7.
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Lemma 11: x 1 y implies (x -® y)™x = y.
Proof: From Lemma 10 the subtraction is defined. (x @ ;)\;
= (RWY)~X = GHRX. Since x Ay = 0, (x¥y)\x = y and thus TxVy)~x = .
Therefore (X ® FI\X = ¥.
Lewms 12: x <y implies x @ (X)) = y.

Proef: Lc < y. thea x V(y-x)zy. Also xA(y\x) = 0. Hence the
orthogonal sum o and TYNXY exists and ¥ & (FNX) = ¥.

Theorea 13: If;.l.yth‘a; 9 ;iaaninmmupper bound for;and;.

‘n

Proof: By Lemma 10 x & y is an upper bound. Suppose z 1s an upper
bomdwith!’<! ® VY. For l.llx1 € X there exists zy € Z and y1 €Y

with X 22 <x v Y1° Thus by the aatitome law of subtraction
(x1 v y1)~zl < (21 v yl)\xl <x Vyl and hence (xl v yl)\zl 2y 2% Vy‘.

Y < T implies there exists z, € 7 with Yy £ 2,. Thus (xl Vyl)\zl 2y sz

Because z, L (x; Vy N3 and 3, op 2z, it follows from Lemma 4 that
2 L (xl v yl)\z Benge [(x1V yl)\r.l]t\z (x v yl)\z = 0. Thus
x1Vy1 zl.ﬂichmthat!_ﬂ'-xcy<z. Therefore X ® y = z.

In the gemeral case X @ ¥ is not a least upper bound, however.

It is new appropriate to introduce the concept of an associative
orthoalgebra is developed by Patricia Prazer Lock when she was a student
of Foulis amd Memdall,

Definitiom 7:mAn associative orthoalgebra is a set L with a binary relation
1, a partial binary operation & defined if and only if x 1 y, an ortho-
complementation l,ud constants 0 and 1 setisfying the following properties:

(a) xiyifamdonlyif yLxamdx & y=y @ x

o) x_J;OlndeG-x

(e) xix -dxaxl-l

(d) !i( ® y) implies y = 0

(¢) x1 (x @ y) implies x =~ 0

(£) xiyiqliuxl.(xay)ludyl-x O(xﬁy)l
(exrthemodular ideatity).

(8) xLyamdz i (x @ y)impliesy L zandx L (y @ 2z) and
x 0@y ® D=¢(x0y O z (Associative Law)

Theorem 13: If S is a DASBAM then the op logic (s, S 4L, @, 5-, 3._1') is an
sssoclative orthoalgebra.
Proof: It is necessary to verify the axioms.

(a) X1y 1t sad only 1fy1xdu¢ to the symetryof-ins
aad also X @ Y=y ® X by the commutativity of V in S.

2.
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(b)) XL 0asx10forallxeS. Alsox @ 0 = xvb = x.
) TLX as T meFandxlex. X @ T = VET = ¢ = 1.
(d) Suppoae!i(!‘l' ® ¥), then x L (exx) V y. Hence y = 0 and
vy=T1.
(e) Eupp.guii(; ® y), then x L xVy and x = 0. Thus
x = 0.

(f) LetX1y. X<x @ ¥ implies (x & ' <X, thus
FaE + DL Ao T = ITHSG VY =% O GV
=x & (x @ y)! since S 1s orthomodular.

(8) Suppose x Lyandz L (x @ y). Then z L x ¥y and thus
zZ1y. xV(yV 2z) exists and xA(y V z) = (xA y)IV(xA 2z) =0,
thus x L (yVz). Hemcez2iyandxt (z ® V).

Pimally x € G @ 2) =xVyvze(x ®y) D z.

This gives the structure of the op legic of any general DASBAM.

Theeren 1l4:

(P. Lock) If (L, L1, &, i]:? 0, 1) is an associative orthoalgebra

thea it is the op logic of some DASBAM.

This last theorem will not be proved here, but it will be used later.

The next section will present some examples of op logics arising from
DASBAMs preseanted in Part Pour of Chepter III. Many of these satisfy other
special conditions which do net held in gemeral.

e Bk,
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PART TWO: Examples of OP Logics

In this part some examples of op logics will be described. These will
mostly arise from DASBAMs described in Part Four of Chapter III.

Example 1: Let S be a classical DASBAM (that is, a Boolean algebra). There
is omly one operation and therefore the relations of oc and op are trivially

the complementation and equality, respectively. The op logic is identical
to the DASBAM,

Example 2: Let S be a semiclassical DASBAM. The only non-trivial op pairs
are among the maximal elements. The structure of S is almost the same as that
of S except that all of the tests are squeezed together at the top, as
‘11lustrated below im Figure 2.

3 | 3 e

Pigure 2

This structure is not Boolesm smd non-modular since it contains Ds
as a swblattice. It is orthomedular, though, as was proved in Part Onmeé.

Emample 3: Let S be the semiclassdcal DASBAM shewm below in Figure 3(a).

Figere 3(a)
The op logic is shewm below in Figuse 3(b).
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This structure is an orthomodular lattice, speeifically OMS6.

Example 4: Let S be the free subtraction algebra on two generators. The
op logic is shown in Pigure 4.

Te 51',(7}
—_na, AAy « 1y
oY) 5’;«3 g < vl

g=%6)

Pigure 4

This structure is the Boolean algebra B4. Whenever the op logic of a
DASBAM is a Boolean algebra the DASBAM is called a Boolean DASBAM.

Exsmple 5: Let S be as in Example 4 and form S+. the dacification of S.
The op-logic is showm im Figure 5.

Phigure 5

This structure is also am orthomodular lattice, the direct product of
OM6 amd B,. The picture in Figure 5 is the same picture that appeared in
ScientifiC American of October 1981 in the article "Quantum Logics" by 3
Hughes. In that article the diagram arose from considering subspaces in R”,
Euclidean 3-space. In the same way this diagram cam be interpreted as
representing the op-logic of the memual {{x,y,z}, {u,v,z}}. These represent
orthomormal bases of BR7 by letting x = [1,0,0], y = [0,1,0], z = [0,0,1],
u = [V2/2, V2/2, 0], smd v = [-/2'72, v2/2, 0]. 12@0 subspace spanned by
x and y is the same as that spsaned by u and v. 1

Example 6: Let S be the Lookout's DASBAM. The partial order diagram of §

is showm in Figure 6.
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Where a = {a}

b = {b}

c = {c}

d = {d}

e = {e}

f = (£}

ab = {ab,de} = de

ac = {ac}

bc = {bc,ef} = ef

cd = {cd,af)}

e = {ce}

of = {ef,bc} = be

e = {ae)

of = {af,cd} = cd

To each equivalence class can be assigned a statement which corresponds

to the physical situsation. These are listed below:
- ¢ontact in sector I
- no goutact to peort
- gontact in sector II
- no comtact to starboard
- contact in sector III
- o comtact astern

m el al Rl e e

ab - no contact in secter II
- contact in sector I or Il

be - no comtact in seetor 1
ed - no contact in sector III

ee - cemtact in sector II or III
se -~ comtact in secter I or III
T - wateh posted
0 - wateh secured

These interpretations make sense in terms of the physical situation.
The op relation here preserves physical meaning.

!!isslgilz Let H be a Hilbert space and Q to be the Hilbert manual as defined
n mple 12 of Chapter III. As explained there each op equivalence class
can be identified with a subspace of H, Therefore the op logic is isomorphic
to L (H), the lattice of subspaces of H, The order on the logic 1s the same
as on ‘L (H). For any Hilbert manual the op logic is thus an orthomodular
lattice.
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Take H to be Ez, Complex 2-space. The partial order diagram of the
op logic is showm in Figure 7.

Figure 7

B 1 o e o o PSR AP WPV SO SIPUIE GRS




SR T S e e e TS T B . . . . g . R .

t;g _ 50 1
3 CHAPTER V: RING DASBAMs i
The previous discussions of manuals and DASBAMs were motivated by
considerations of empirical logic. Many of the examples arose from
applications to empirical science. The examples and results in this
chapter, on the other hand come from an area which seems to be unrelated _.r
to empirical logic. This is the area of abstract algebra and specifically
ring theory.
PART ONE: Boolean Rings 1

Definition 1: A Boolean ring (R, +, °*) is a ring satisfying these two y
identities for all x ¢ R. 3

BR1 xz = x (Idempotent law)
x+x=0 (Characteristic 2)

Prom these two seemingly innocuous properties much structure can be
derived.

Lemma 1: If R is a Boolean ring then it is commutative, that is xy = yx
for all x and y.

Proof: (x+y)2-(x+y)(x+y)-x2+yx+xy+y2-(x+y)
+ yx + xy. Butbychnidcqotcnt1m(x+y)2-x+y. Thus yx 4 xy = 0,

W NRSV S -V N— T VN — ST ¥

Hemce yx =-xy = xy.

Theorem 1: If R is a Boolean ring then it is a subtraction algebra under
X\y = X + Xy.

Pt W)

Preof: As in previous chapters the axioms shall be verified. 1

(s1) x~(y~x)-x\(y+yx)-x+xy+x2‘y-x+xy+xy-x.

(s2) xs(x\y)-x\(x+xy)-x+x2+xzy-x+x+xy-xy
=yx = y~(yx).

(S3) (zvx)y = (2 + zxXN\y = z + zx + zy + zxy is symmetric

in x and y. Hence their roles can be switched and
(ax)>y = (zyh x.

This is the quickest way to verify that R is a partially ordered set
and is closed under greatest lower bounds.

[Vl 9 )

yrvery

Lemma 2: x <y if and only if x = xy.

Proof: Let x <y, then \y = 0 = x + xy. Thus xy = -x = x. Conversely, )
let x = xy. Then x \y = xy\y = Xy + Xy = xy + xy = 0. Hence x < y.

Lemma 3: For all xe R, O < x. 1
Proof: O = Ox, thus by Lemma 2 0 < »,

Boolean rings are also closed under leaat upper bounds.
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Theorem 2: If R is a Boolean ring and x ¢ R and y ¢ R then x + y + xy is
the least upper bound of x and y.

Proof: First it must be established that x < x + y + xy and y < x
+y + xy. This follows from x(x +y + xy) = x +x’y+x2y-x+xy+xy-x

and likewise y(x +y + xy) = y.

Next, suppose x < z and y < z. That is, xz = x and yz = y. Then
(x+y +xy)z =xz+yz+xyz=1x+y+ xy and hence (x+y+xy) <z

Therefore x Vy = x + y + xy.

Note that the ring is closed under addition and multiplication which
means that the expression x + y + xy is defined for all x and y. Hence
x V y exists for all x and y.

Theorem 3: Any Boolean ring is a distributive lattice with lower bound
in which any principal ideal is a Boolean algebra. This structure is called
a generalized Boolean algebra.

Proof: This follows from Theorem 1 and Theorem 2, which established
that R was a subtraction algebra and that it was closed under least upper
bounds.

There is still ome more property desired.

Lesma 4: If a Boolean ring has a multiplicative identity 1 it is an upper
bouad for the lattice.

Preof: For all x, 1 » x = x and thus x < 1.
Theorem 5: Any Boolean ring with identity is a Boolean algebra.

Proof: The lattice gemerated by the ring is a subtraction algebra
with upper bound 1. Therefore, by Theorem I-17, it is a Boolean algebra.

Corollary: The complement of x in a Boolean ring with idertity is
1+ x.

Preof: x' = \x =1 +1.x=1+x,
These results provide us with the first example of a ring which generates

a DASBAM. 1In this case the DASBAM ig classical. The op logic is identical
to the DASBAM.
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PART TWO: Fields

b The nekt type of ring to be considered is ome which has much additional
structure, namely a field. A field is a commutative ring with identity in

which every non-zero element has a multiplicative inverse.

Theorem 6: If F is .a field it is a partially ordered set under x < y if and
only if X2 = xy. -

Proof: (a) x2 - xz, hence x < x (Reflexive)

(b) Let x <yandy < x. Thenxz-xy
and thus x = Q or x = y. Likewise
yz-yxinpliesy-xory-o. If
x-Othenyz-yx-Oandy-'O,
therefore y = x. (anti-symmetric)

(¢) Let x <yandy < z. Thenxz-xy

amd yr = yz. Thus either y = 0 or

y=323, If y= (0 them x = Q0 and xz = 0,

Thes x < z. If y = z them x2 = xz and

X + 2. (Transitive)

L e

This partial order is somewhat trivial, as xz = xy implies x = 0 or
X =y in a field. Again, as with Boclean rings the following lemma {s true.
Lemma 5: O < x for all x ¢ F.

2

Proof: 0" = 0 =0-x, hemce 0 < x.

The partial order diagvam belew illustrates the gemeral partial order
diagram of a field.

v % 4 z

o
Taguve 1
Bach non-zero element is an atom and is also maximal. The structure

is that of a semi-classical DASBAM where x\y = x if y ¥ x and 0 if y = x.
Every non-zero element is oc to zero arnd op to each non-zero alement. This

L strueture is called a field DASBAM or field manual.

-

[ Ixpuple 1: Let F = zs,th. prime field of the integers modulo 5. The

{ : partial order diagram™is the same as Figure 1.

)

S H_l_c_rz_: Let F = G!'Zz, the Galois field of order 4 which 1is the splitting
& ield of the polynomial x3 - 1 over the prime field 22. The partial order
= diagram is shown in Figure 2, where a2 + a + 1 = 0.
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EX-4

Q

Pigure 2

le 3: Let F =R, the real mumbers. The field DASBAM has a non-
countably infinite number of atoms and operations. The partial order
diagram is showm in Pgure 3.

-Q

0 )

— Figure 3

Sinee the omly op equivalence classes are {0} aad F\{0} it follows
that the partial order diagram for the op legic of amy field DASBAM is that
shown in Figure 4.

E\0}

{0}

Pgure 4
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PART THREE: Semi-Simple Rings

Definition 2: A semi-simple ring is a ring R in whi x" = 0 for any n
implies x = 0, that is, R has no non-zero nilpotents.

Theorea 7: (W_ardlﬂ). If R is a finite semi-simple ring it is the direct
product of fields.

This result is quite useful when coupled with Theorem III-6,
as will be shown by the next Theorem.

Theorem 8: Any finite semi-simple ring forms a DASBAM.

Preoof: By Theorem 7 it is the direct product of fields. Since each
field 1s a DASBAM,by Theorem III*é their direct product is also a DASBAM.
Therefore the ring is a DASBAM.

m structure of these ring DASBAMs 1is rich and interesting. If
«o.xF_ is the direet product of n fields then each x ¢ R can
be ud:quel cmu‘ood as an n-tuple seeesX ) where x, € F,. The ring
operations are the seme as the field opmtions coordinaccwise and the
DASBAM relations are algo the relations from the field DASBAMS expressed
coordinatewise. O in the ring is (0,0,0,0...) and 1 in the ring is (1,1,...).

Lemma 6: u is invertible if and only if uy $ 0 for all {i.

Proef: Let u be invertible, t:hoa there exists u-l such that uu.l -

uly=1=(1,1,...). Them u (sl), = 1 for all 1 and hence u, is invertible.
Sinccxe!'h:hwcrtiblc:l.fmdoniyifx#Oitfollmtlutu $ 0.

Cmcruly. suppou us= (ul.....u ) wvhere uy # O for all i. Then

(“1 s U 1’“‘"“:1 ) is a multiplicative 1nv¢tse for u and hence u is
invertible.

Theerem 9: x is meximal if amnd only 1if x is invertible.

Preef: Let x be maximal and take y to be the n-tuple (yl....,y tl)

Muyi-xiMxifOndyi-lﬁnnxi-O. Clearly x, <y, and

heace x <y. Thus x =y and x, = 0 for no 1. Therefore x is invertible.

Conversely, let x be invertible and suppose that x < y. Then X 2y

for all 1. $ 0, so T A since ri is a field DASBAM. Therefore x = y
and x 1is mxi.&

By this theorem the dominating set of maximal elements is the same as
the set of invertible elements.

Theerem 10: x is an atom if and only if x has exactly one non-zero coordinate.




g |

s

Ki.

55

Proof: Let x be an atom and suppose x had two or more non-zero
coordinates. X, and Xt° The element y with v - 0 when 1 ¢ £ and Yo = %Xp

is not zero, yet y < x. Hence x is not an atom.
Suppoae x has exactly one non-zero coordinate and suppose y < x.

-Owhenever::I.;‘l;audyk xkorO. us y = xorys=0,
Thcrcf%rc x :I.s an atonm.

As with direct products of arbitrary DASBAMs the relations of oc and
op can be defined coordinatewise.

Theorem 11: x oc y if and only if X, = 0 whenever Yy # 0 and x, $0
whenever vy " 0.

Proof: (x Ay)i-x A yi-O for all 1 and thus x A y = 0.

i
(x¥ ’)i - x, v A exists because either x, ory, = 0. Also xiV vy $0

beeause either x, or y, is nen-zero. Therefore x V y is invertible and maximal.

Corollary: x oc y if and only 1f xy = 0 and x + y is invertible.

Preef: (xy) = 0, thus xy = 0, (x+y)1-xi+yi#0, thus
x+yis ilwertibic.
Theorem 12: xopyifudonlyifxi-Owhonevcryi-Oandxiy‘O
whenever y, $ 0.

Let z be defined as such: = 0 whenever x, and y, are non-
zero #Owhonworxi-yi-o. Th%nxoczaadyocz. ’l'husxOpy.

Defin:l.tion 3: e 1s idempotent if and only if e2 =@e. E={ecRleis
idempotent} is the set of all idempotents of R,

This set of idempotents is useful in determining the structure of the
op legic.

Theorem 13: eeEifmdonlyifei-Ootl.

2 2
. - ;rm;: e =g¢ implies e, =e, . Because e, € F:l.’ a field,ei = 0 or
1 L]
Theorem 14: For all x ¢ R there exists exe E such that x op L

Preef: Take e = 1 whemever x, $ 0 and .xi = 0 whenever x’.l = 0.
. is then ﬁmotcn% and e OP X.

This shows that x = 'e'x for some ¢ E. Thus the op-logic is identical
to the idempotent structure. The next theorem summarizes this nicely by
giving the general structure of the op logic of a finite semi-gimple ring
DASBAM,

- ar o«
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3 ~ Theorem 15: If R is a finite semi-simple ring DASBAM then R is
- isomorphic to E and 1s hence Boolean.

m Proof: Let xe i, then there exists e_ ¢ E such that x = §° Also,
suppose se X - <¥. Then ? < T and e, < ey. fence the mapping preserves
S order.

To show E is Boolean note that each idempotent is an n-tuple of
zeros and ones. Thus each idempotent can be uniquely identified with the
Boolean algebra containing 20 elements. Therefore the logic and the set
of idempotents are Boolean algebras.

There is one more result relating ring structure to the structure of
the op-logic.

Theorem 16: Let R be a finite semi-simple ring and R & E the op-logic.
There is a ome-to-ome correspondence between the principal order ideals

in the op-logic and the primcipal ring ideals.

%: Let x R be a ring idesl. If y ¢ R 1is suchthatxi-Oi.mplies
=6 the claim is that y ¢ x R.

Por take z = 0 whemever y -Olndzy‘!-ly
Yy i i i i
-1

(xi exists because vy $ 0 and heance x, % 0). X, zy -y, for all 1, thus

when y, $ 0.

xzy-yandyexl.

Thmtcl&iniatlutcyi.‘. 1-01fandon1yife = 0, Also

x, =0 implies y, = O and ¢y, = 0. Thus e, = O implies e -Oandhence
1 i i x, vy

‘y le. Therefore the principal ideal x R is idemtified with the principal

‘ — , - -1
1dull(cx). Alwcxexkucx-xzwhcr.zi Oifxi-Oandxi if

1#0. Comversely x ¢ ¢ R as x = a_x. Therefore x R = ¢ R and xR = y R
ollyifcx-cy.

Cenvarsely, let e € E and take I(e_). This is the set of all elements
y wheve e <Q.Mc-ceﬁdy e e 7. ’l.'lureforeyeoxn. The
oréer léedl 1s*identical’to the Fimg 1dea1.* 7

To comclude this section it is best to present some examples.

"2’1"—&' Let R = Z_, the rimng of the integers modulo 6. The partial
or diagram is shmginrimc 5.

Figure 5
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26 is isomorphic to z2 X Z3 as shown below:

0 (0,0) idempotent

1 1,1) idempotent, invertible
2 0,2)

3 (1,0) idempotent

4 0,1) idempotent

5 (1,2) invertible

The number of tests is 2 = ¢$(6) where ¢ is the Euler phi-funetion
representing the number of elements relatively prime to 6. Z, is the
product of 2 fields and has 22 = 4 idempotents. As the direct product of
field DASBAMs it is a DASBAM, identical to the free DASBAM on two elements.

Example 5: Let R = Z,,, the ring of the integers modulo 30.
isomerphic to the direet product of the fields zz. 23. and ZS' Hence it
is a DASBAM. The peartial order diagram of 230 and E (Z‘ao)are given in

Figure 6. The meximal elements {1,19,13,29,23,7,11,17}, the invertibles.
The atoms are {24,10,18,15,5,20,12}, which heve the property that pa = 0
where p » 2,3, or 5 and a is am atom. The idempotents are (1,25,16,21,10,
15,6,0}, those elemeats in I(1). The principal ring ideal generated by 21
is {0,3,6,9,12,15,18,21,24,27}, which are tic same elements contained in
I(ZT) in the op-logic.

230 is

'''''''''
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PART FOUR: Rings with Involution

_ The previous sections of this chapter discussed rings which were

' DASBAMs. In this section rings will be discussed which do not form a

- DASBAM directly but which generate a DASBAM.

Definition 4: A ring with involution, or *-ring is a ring R with an
involution map * : R + R satisfying the following:

- @ H"-x ,

®) x+y) =x +y

(c) (xy)* = y* x

From the *-ring one can choose a subset E < R where E = {e ¢ Rle = ez = e*}.
These are the idempotemt amd self-cdjoint elements of the ring, also known
as the projections of R.

Theerem 17: E is a pertially ordered set under e < f if and only if e = ef.

- Proef: (a) e = .2. Thes ¢ < ¢ (Reflexive)
() Let e <fand f <e, Thone-ef
amd £ = fe. Thus ¢ = ¢* = (ef)*
- £ o = fe = f, (Aati-symmetric)
(¢) Lot e <famd £f <g. Then e = ef
and £f = fg. Hence eg = (ef)g = e(fg)
. =of e and e <g. (Transitive)

Lemma 7: O is a lower bewmd for E.

ekt —

*
Proof: 0 = 0-0. Alse 0" = (0 + 0)" = 0" + 0°, thus 0" = 0. Hence
OcE. Also Oe = 0 for all ¢ ¢ E, thus 0 < e for all e ¢ E.

Lemma 8: If the *-ring has a multiplicative identity 1 then 1 is an upper
bound for E.
*
: 12 =1 and x = (x'l) - 1 x for all x, thus 1 = 1, Hence
lek. Finally e-1 = ¢ for all ¢ ¢ E and thus e <1for all e € E.
= Por the vest of this section it will be assumed that R has a multi-
: plicative ideatity.
Theorem 18: E is orthocomplemented under dai-e
Preet: (a) ()l =1-(1-0e) =0
() Llet £ < e snd £ < o' thed fe = £ and £(1-e) = £ - fe
= f-Fa0=f" Thus O is the greatest lower bound
, of ¢ amd el.
b : () Let e <gand el <g, theneg=e and (1 -e)g =3 - eg

=g-e¢ But 1-e)g=1l-ae, and thusg-lwhcncel
is the least upper bound of e and el.
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Definition 5: e 4 £ if and only if ef = 0 = fe.

Lemma 9: el f if andonly 1f £ <1 -e

Proof: Let e 2 £, then ef = 0, Thus f(l -e) = f - fe = f -0 = f
and f < (1 - ¥).

Let f < (1 - e), then f = f - fe and fe = 0. Hence e % f,

Theorem 19: e 1 f implies 0 is the greatest lower bound for e and f and
e + f 1is the least upper bound for e and f.

Proof: Let e L f and suppose g < e and g < £f. Then g(ef) = (ge)f
»gf mg=(, as ef = 0, Thus 0 is the greatest lower bound.

Suppose ¢ < g and f < g, then (e + f)g = eg + fg = ¢ + £, thus
c+f<gaul¢+f1sthe1¢aatupporboundofeandf.

Given the previous results the following theorem, which is the goal .
of this aection shall be established.

Theorem 20: E is an associative orthoalgebra where 1 is as defined in
Definition 5. el 181 -e¢. ¢ @ f is definedwhen e L fande @® £
= a + £, Finally O and 1 are the constants from the ring.

Proef: The seven axioms of Definition IV-5 need to be verified.

(1) eLf implies ef = 0 = fe, thus £ Le. Alsoe @ f=ce + f

(11) elL0as e -0O=¢e. Alsoe @ O=c +0 =e.
(111) eﬁ(l-c)ue(l-c)-e-ez-e-e-o. e @ (1 -e)

(1 -89)), th.ncf-l-c-cz-Oandthusef-O.
e) and £ - ef = 0, thus £ = Q,

@ f), then e(e + f) =0 =¢ + ef. But, e f
ef = 0, s0 that ¢ = 0.

(vi) Let e L f, theme(l - (e © £)) =e(l-e=f£) = e - & - ef
=@-0=0andei(e @ £)i, Finally (1 -f£) =e +(1 - e - £)
amd thus ft =a @ (¢ @ D)I.
(vil) Lctclfad.i.(o ® £), themn ge + gf = 0 end éf:=0. Hence"
A pt-l-gf = of aad gf = 0. Thus g L f. Without loss of
: pemerality g 1 e. Thus e(g + £f) meg + ef = 0 + 0 = 0 and
o_x((g‘f).!indlch (f © g) mea+ (f+g) =(e+£)+g
= (e g

Cezollary: E generates a DASBAM.

Preef: By Theorem 20, E is an associative ortho-algebra. Thus, by
Theorem IV-14 from P. Lock it follows that E is the op logic of some DASBAM.

e
(iv) Let
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This DAS®AM may not itself be part of the ring, but is generated from
it by the cor:cruction given in Lock's proof. Basically what is done is
maximal orthogonal sets of projections are taken and used to form a manual,
from which the event structure is formed to yield a DASBAM.

The next results examine what happens vhen an additional condition
is added to the *-ring. The projection structure satisfies more special
properties than a general associative orthoalgebra.

Defimition 6: A Beer *ring is a *-ring satisfying the Baer conditionm.

Por all subsets S €R there exists e ¢ E such that the right annihilator
of S,i.e. the set {x ¢ R{sx = 0 for all s ¢ S}, is the principal right ideal
generated by e, eR = {er|r ¢ R}. That is, ser = 0 for all s ¢ S, r ¢ R.

Theorem 21: If R is a Baer *-ring them E is a complete orthomodular lattice.

Proef: Let S €Kk and let ¢ ¢ E be the annihilator of S, that is fer = o
¢ R. Them fel = 0 = fe. Hemce f(1 - e) = f - fe = f and

for all £ e 8, r
f<l-efor all £ cS. Let g be such that £ < g for all f ¢ S. Then
f=fg and £(1-g) = 0. Hemce 1 ~g=er amd e(1 - g) =e2x mer =1 - g.
Thus 1 - g=e-gs and 1 - e =g - ge = g(1 - ¢). Thereforel - e < g and
l - e is the lesst upper bound of S.

To shew that the greatest lower bound exists, take S' = {1-f|f ¢ S}.
Let ¢ be the leesst upper bownd for $', them 1 - ¢ is the greatest lower bound
fer S.

Simee $ is amy avbitrary subeet of E it follows that E is a complete
lattice. The orthemodular law was verified as part (vi) of Theorem 20.,
hence E is a complete orthemodular lattice.

To illustrate an application of this last theorem the next example is
presemted.

Exsmple 7: Let B be a Eilbert spece and take B(H) to be the set of all bounded
limear operaters omn H. B (M) forms a ring under (T +T2)x-'rx+'rxand

(T, T,)x = T (sz). Purthermore,; let : be the adjoint on B(H), hm B%H) is a
*-Tikg. Pd) S{TecBMI|T = ‘I.‘t = T"} is the set of projections on H and
serves the seme role as E in R. Te show the Baer condition let S < B(H) and
form ?m S. Tahe T to be the prejectiom onto this subspace. Then.

ST =  for all S ¢ S. Furthermere, suppose SO = 0 for all S € S, Then
UxcQqker S for all x ¢ X sad thus U = TU. Therefore U ¢ T B(H) and

the Deer comdition is satisfied. The DASBAM generated from P(H) is the same
as the Hilbert mamual as described ia Ewemple III-12.
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